SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Organic Data Review Checklist - Standard Validation

Project:	Harley-Davidson			Page 1 of 11
SDG No:	180-41760-1	_ Analysis:	VOC	
Laboratory:	TestAmerica Pittsburgh	Method: Matrix:	8260 LL Water	
	g.,		water	
data have been s	ackage has been reviewed and thummarized. The general criteria unination of the following:	ne analytical quality coused to assess the an	ontrol/quality assural alytical integrityof th	nce performance e data were
	Case Narrative Analytical Holding Times Sample Preservation Method Calibration Method and Project Blanks	Analytical Surrogate Internal Standard Pe MS/MSD Recoveries LCS Recoveries Re-analysis and Sec	erformance s and Differences	
Project Specific Q	A/QC or contract requirements m	ay take priority over v	alidation criteria in t	nis procedure.
Overall Remarks	s: Calibrit	ah, LCS	, and	MS/MSD
	2) 4cc > 2			
	· · · · · · · · · · · · · · · · · · ·			
				
<u></u>				
				_
Definition of Qualit	iers: "U", not detected at the associate "UJ", not detected and associate "J", associated value estimated "R", associated value unusable "=", compound properly identifie	ed value estimated or analyte identity unf	ounded	
Reviewed by:	Alen Co. Miller St. a	h)M/C	Date:	3/17/15
QA Reviewed by	: CA Rue		_ Date:	6-23-15

AGM 3/22/15 4/6/15

	Page 2 of 11
I. Case Narrat	ive
Verify direct state	ements made within the Laboratory Case Narrative (note discrepancies).
Remarks:	No 18548
	
II. Re-analysis	s and Secondary Dilutions
Verify that re-an appropriate resu	alysis and secondary dilutions were performed and reported as necessary. Determine ults to report.
Remarks:	Mer cossees.

III. Holding Times

VOC - Waters - unpreserved: aromatic within 7 days, non-aromatic within 14 days of sample collection

VOC - Waters - preserved: aromatic and non-aromatic within 14 days of sample collection

VOC - Soils - preserve or analyze within 48 hours of sample collection; analyze within 14 days of preservation

SVOC, Pest., PCB - Waters - extract within 7 days of sample collection, analyze within 40 days of extraction SVOC, Pest., PCB - Soils - extract within 14 days of sample collection, analyze within 40 days of extraction

Deviations:

VOC		SVOC			Pest/PCB		
Date	Date	Date	Date	Date	Date	Date	Date
Collected	Analyzed	Collected	Extracted	Analyzed	Collected	Extracted	Analyzed
-							
							
		<u> </u>					
-							
							_
1							
			Date Collected Analyzed Collected	Date Collected Analyzed Collected Extracted			Date Collected Analyzed Collected Extracted Analyzed Collected Extracted Analyzed Collected Extracted Analyzed Collected Extracted Extracted Analyzed Collected Extracted Extracted Collected Extracted Collec

			ш		
$\boldsymbol{\Gamma}$	•	461		•	

 If holding times are exceeded, 	all results are	qualified as	estimated	(J/UJ)
--	-----------------	--------------	-----------	--------

If holding times are exceeded	by more than 2X	, reviewer may qualit	fy non-detected resu	lts as unusable (R)
---	-----------------	-----------------------	----------------------	---------------------

Remarks:			NO	1354mS	566	cettache	
		_					 -

Page 4 of 11

IV. System Monitoring Compounds (SMC) Recoveries (VOC, SVOC, Pesticides, PCBs)

List SMC compounds with unacceptable recoveries:

Deviations:

Deviations:		1/00			SVOC			SVOC		Pest	РСВ
		VOC		D.1.			A . ! -!				LOD
Sample #				B/N	Compou	inds	Acid	Compou	INGS	TOY	DOE
	TOL	BFB	DCE	NBZ	FBP	TPH	PHL	2FP	TBP	TCX	DCB
	 										
QC											
Limits											
LIIIIII	<u> </u>	<u> </u>									

- 1. If any SMC recovery is <10%, qualify all positive results in associated fractions as estimated (J)
- 2. If any SMC recovery is <10%, qualify all nondetects in associated fractions as unusable (R)
- 3. If SMC recoveries fall between 10% and the lower recovery limit, qualify results as estimated (J/UJ)
- 4. If SMC recoveries fall above the upper recovery limit, qualify positive results as estimated (J)
- 5. Use professional judgement to qualify Pest/PCB results when SMC recoveries are >10%
- 6. Use professional judgement to qualify results when SMC recoveries have been diluted out of spec.
- 7. For SVOC, qualification of the data is required only when 2 or more SMC per fraction are not within control limits
- 8. Note: SMC formerly known as surrogates.

Remarks:		 Nati	554cs.	·	<u></u>
					
	<u></u>				

Page 5 of 11

V. Internal Standards Performance (VOC, SVOC)

VOC internal standard area counts within -50% to +100% of standard (Y/N) VOC internal standard retention times within ± 30 seconds of standard (Y/N)

SVOC internal standard area counts within -50% to +100% of standard (Y/N) SVOC internal standard retention times within + 30 seconds of standard (Y/N)

Deviations:

	IS	Area	Acceptable	RT	Std. RT
Sample #	Affected	Counts	Range		Value
	7 11.00104	Journe	range		value
				+	
<u> </u>					
	-				-
				-	-
				+	-
				 	
					1

- 1. If area counts are outside limits, qualify positive results associated with that IS as estimated (J)
- 2. Non-detected compounds quantitated using an IS area count >100% should not be qualified
- 3. Non-detected compounds quantitated using an IS area count <50%, qualify as estimated (UJ)
- 4. If extremely low area counts are reported (<50% of the lower limit), qualify non-detects as unusable (R)
- 5. If an IS retention time varies more than 30 seconds, review the chromatographic profile for shifts and irregularities. Use professional judgement to qualify the data estimated (J/UJ) or unusable (R)

Remarks:	No VSSWS,				
					
		- "			

VI. Blanks				Page 6 of 11
to analyze VOC	s and SVOCs Yes	No	r each 12 hour period on each to the contamination	
Laboratory M	ethod Blanks:			
Date:	Lab ID #	Fraction	Compound	Conc. (ppb)
Associated P	roject Blanks (e.g., Lab ID#	equipment rinsates Fraction	s, trip blanks, etc.) Compound	Conc. (ppb)
Remarks:		No do	fectous	

VI. Blanks (continued)

Calculate action levels based on 10X the highest blank concentration of "common laboratory solvents", VOCs (methylene chloride, acetone, toluene, 2-butanone, cyclohexane) or SVOCs (phthalates), and 5X the highest blank concentration for all other VOC, SVOC, Pesticides, and PCB compounds. Sample weights, volumes, and dilution factors must be taken into account when applying the 5X and 10X criteria. This allows the total amount of contaminant present to be considered.

De		4.0		
110	11/12	3714	\sim	•

	Maximum Conc.	Action Level (ppb)	Samples Affected
Compound	Detected, (ppb)		•
			
			
÷			
			-

- 1. If compound results exceed the action levels, the data are not qualified
- 2. If compound results are below the required reporting level, report results as non-detect (U) at the reporting level
- 3. If the compound is detected above the reporting level, but below the action level, qualify as not-detected (U)
- 4. If gross contamination exists in blanks (i.e.,, saturated peaks by GC/ MS), all affected compounds in the associated samles should be qualifed as unusable (R) due to interference.
- 5. If blanks were not analyzed per matrix per concentration level for each 12 hour period on each GC/MS system used to analyze VOCs and SVOCs use professional judgement to qualify data. Data may be rejected (R).

Remarks:	Mo	Votectus	

VII. Initial & Contining Calibration (VOC, SVOC)

GC/MS instrument performance checks (BFB / DFTPP) Acceptable Y or N All compounds must have and RRF > 0.01, %RSD < 30, and %D < 25 $\,$

VOC - Date of initial calibration:

VOC - Date(s) of continuing calibration:

Was the 12 hour critieria met? Y or N

3/3/15

SVOC- Date of initial calibration:

SVOC - Date(s) of continuing calibration:

Was the 12 hour critieria met? Y or N

411	

Deviations:

Compound	Date	RRF	%RSD	%D	Samples Affected
1.4-Dioxus	3/3/15	0,0029			1,2,3 = R
Isobuty Alchol	3/6/15	0,0043			
1.4-0ioxans	3/6/15	0,6024			1,2,3 = R
Ace tous	3/6/15			30.6	Neue
Bromonothan6	3/6/5			46.5	W= 1,2,3
Chlaroethans	1			35.9	plays
OrchloroFlyoromethans	V			47.7	UJ = Na6

* % Difference = $((RF_{CCV} - RF_{ICAL\ AVG})/RF_{ICAL\ AVG})$ x 100. In instances where the bias of the CCV impacts validation qualifiers, review the RF values or amount reported to confirm that the % Difference or %

Drift are reported with the correct negative or positive value.

58.7 UJ = None

- 1. If any compound has an intial or continuing RRF of < 0.01, qualify positive results as estimated (J)
- 2. If any compound has an intial or continuing RRF of < 0.01, qualify non-detects as unusable (R)
- 3. If any compound has a %RSD >30 or a %D >25, qualify positive results as estimated (J)
- 4. If any compound has a %RSD >40 or a %D >40, qualify non-detects as estimated (UJ)
- 5. If BFB or DFTPP mass assignment / ION abundance criteria are all associated data as unusable (R).
- 6. If samples were analyzed outside the 12 hour BFB or DFTPP performance check time period, qualify the affected sample data as estimated (J/UJ).
- 7. If separate calibration for water and soil were not performed, use professional judgement to evaluate the data.

 Data may be rejected (R).
- 8. If calibrations were not completed within the 12 hour criterion, qualify all associated data as estimated (J/UJ). If the 12 hour criterion was grossly exceeded, reject all associated data, (R).

Remarks:	S66	above

VIII. Initial & Continuing C	alibration (P	esticides, P	CBs)	Page 9 of 11
Linearity evaluation, are %F	RSD <20? (Y/	N)		
Is the RPD between calibrat	tion factors <u><</u> 2	25? (Y/N)		
Are multicomponent calibrat	tion data prov	ided for each	n analysi s da	te? (Y/N)
Is the difference between co	olumns check	≤ 25%D? (Y	/N)	\ <u>/</u>
Are 4, 4'- DDT and endrin b	eakdown (PE	EM) <u><</u> 20% a	nd combined	breakdown ≤ 30% (Y/N)
Deviations:		,		
Compound	%RSD	RPD	Samples At	fected
			X	
			4	
)
		\wedge	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
* % Difference = ((RF _{CCV} - RF _{IC}	ALAVOVRE CALA	va) x 100. In i	nstances whe	re the bias of the CCV impacts
validation qualifiers, review the	/ 1 1		1	
Drift are reported with the corre	ct negative or	positive value.		
Actions: 1. If %RSD criteria are not meta	qualify positive	e results as es	timated (J) ar	nd non-detects as estimated (UJ)
2. If RPD criteria are not met q3. If %D criteria is not met, qual	ualify positive i	results as estir	mated (J) and	non-detects as estimated (UJ)
4. If breadkwon criteria are not And non-detects should be	met, positive 4	, 4'-DDT and e		
	, , , , , , , , , , , , , , , , , , , ,			
Remarks:				

Page 10 of 11

IX. Matrix Spike/Matrix Spike Duplicate Information

General MS/MSD Criteria: percent recovery (%R) relative percent difference (RPD)

VOC	SVOC	Pest	PCB
70-130	45-135	40-140	40-140
<30	<50	<50	<50

Project Sample(s) Spiked:

180-41760-1

Deviations:					
	%R	%R	RPD	RPD	
Compound		Limits	,	Limits	Samples Affected
Trans-1,3, - Dichloropy	132	36-142	8	35	Naus
Trans-1,3, - Dichlop	m 65	65-125	_		
trans -1.3 Oichlard present	64		t	35_	Novs 1, 23 - us
					0

- 1. If the spike recovery is above the upper control limit (UCL), qualify all positive values in the unspiked sample as estimated (J) and non-detects as estimated (UJ).
- 2. If the spike recovery is below the lower control limit (LCL), qualifty positive values as estimated (J). And non-detects as estimated (UJ).
- 3. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 4. If the RPD does not meet criteria, qualify positive values in the unspiked sample as estimated (J)
- 5. Use professional judgement to qualify additional samples in the analytical group based on MS/MSD results
- 6. Use professional judgement for qualification of data for unspiked compounds

Remarks:	 See about	
	 	
		•

Page 11	of 1	1
---------	------	---

X. Laboratory Control Sample Information

General LC	S Criteria:
percent r	ecovery (%R)

VOC	SVOC	Pest	PCB
80-120	60-120	50-130	50-130

Laboratory LCS Identifications:

Deviations:

Deviations.			
Compound	Date	%R	Samples Affected/Qualifiers Applied
9-Hexaus MTBF	3/6/15	_ >}	1,2,3 = J/uJ
MIBE	ĺ	>2	
Cis -1,3 - Dichlosp	ma	66,	
Cis -1, 3 - Dichloropopure		58	

Actions:

Action should be based on both the number of compounds outside the criterion and the magnitude of the exceedance.

- 1. If the LCS recovery is below limits but > one- half the lower limit, qualify valves as estimated (J/UJ).
- 2. If the LCS recovery is < one-half the lower limit, qualify all data for that analyte as unusable (R).
- 3. If the LCS recovery is greater than the upper limit, qualify positive valves for that analyte as estimated (J).
- 4. If more than half the compounds in this LCS are not within recovery criteria, then qualify associated detected compounds as estimated (J).
- 5. Use professional judgement for qualification of data for compounds with no LCS information

Remarks: _	Sec above			
		<u> </u>		
·				

Hold Time Summary

Sample Number	Method	Date Collected	Analysis Date	Date Extracted	Days to Analysis
180-41760-1	SW846 8260C	3/4/2015	3/6/2015		2
180-41760-2	SW846 8260C	3/4/2015	3/6/2015		2
180-41760-3	SW846 8260C	3/4/2015	3/6/2015		2

Trip Blank Detections

Sample ID Sample Analyte Result Method Units Qual

No desteredens

Mon Mon 15

3/17/15