SOILS RISK ASSESSMENT FORMER YORK NAVAL ORDNANCE PLANT 1425 EDEN ROAD YORK, PA 17402

Prepared for:

Harley-Davidson Motor Company Operations, Inc. York, PA

March 2012

Prepared by:

Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, PA 17110-9340

560 Route 52, Suite 202 Beacon, NY 12508-1248

1108 Vestal Parkway East, Suite 2 Vestal, NY 13850-1750

SOILS RISK ASSESSMENT FORMER YORK NAVAL ORDNANCE PLANT 1425 EDEN ROAD YORK, PA 17402

Prepared for:

Harley-Davidson Motor Company Operations, Inc. York, PA

March 2012

Prepared by: Groundwater Sciences Corporation

Reviewed by:

Stephen M. Snyder

Senior Associate

Atephas M. Anyder

Kathy Zvarick

Senior Project Manager

Kathypaick

Table of Contents

	EXI	ECUTIVE SUMMARY	
1	INT	RODUCTION	1
2	COl	NCEPTUAL SITE MODEL	4
3	DA	ΓA ANALYSIS	8
	3.1	COPC Screening	8
	3.2	Hot Spot Evaluation	11
4	•		14
	4.1	Assessment of Mutagens	14
	4.2	General Exposure Parameters	15
	4.3	Route-Specific Exposure Parameters	17
	4.4	Assessment of Lead Exposures	25
5	TO	XICITY ASSESSMENT	28
6	RIS	K CHARACTERIZATION	30
7	UN	CERTAINTY ANALYSIS	32
	7.1	Data Evaluation	32
	7.2	Exposure Assessment	33
	7.3	Toxicity Assessment	34
	7.4	Risk Characterization	36
8	CO	NCLUSIONS	37
9	REF	FERENCES	30

Tables

Table 1	Screening of Constituents in Surface Soil – East Campus
Table 2	Screening of Constituents in Surface and Subsurface Soil – East Campus
Table 3	Screening of Constituents in Surface Soil – West Campus
Table 4	Screening of Constituents in Surface and Subsurface Soil – West Campus
Table 5	Statistical Summaries and Identification of Exposure Point Concentrations
Table 6	Dermal Contact with Surface Soil by a Maintenance Worker – East Campus
Table 7	Incidental Ingestion of Surface Soil by a Maintenance Worker – East Campus
Table 8	Inhalation Exposure to Surface Soil by a Maintenance Worker – East Campus
Table 9	Dermal Exposure to Surface and Subsurface Soil by a Construction Worker – East Campus
Table 10	Incidental Ingestion of Surface and Subsurface Soil by a Construction Worker – East Campus
Table 11	Inhalation Exposure to Surface and Subsurface Soil by a Construction Worker – East Campus
Table 12	Dermal Contact with Surface Soil by an Adolescent Trespasser – East Campus
Table 13	Incidental Ingestion of Surface Soil by an Adolescent Trespasser – East Campus
Table 14	Inhalation Exposure to Surface Soil by an Adolescent Trespasser – East Campus
Table 15	Dermal Contact with Surface Soil by a Maintenance Worker – West Campus
Table 16	Incidental Ingestion of Surface Soil by a Maintenance Worker – West Campus
Table 17	Inhalation Exposure to Surface Soil by a Maintenance Worker – West Campus
Table 18	Dermal Exposure to Surface and Subsurface Soil by a Construction Worker – West Campus
Table 19	Incidental Ingestion of Surface and Subsurface Soil by a Construction Worker – West Campus
Table 20	Inhalation Exposure to Surface and Subsurface Soil by a Construction Worker – West Campus
Table 21	Dermal Contact with Surface Soil by an Adolescent Trespasser – West Campus
Table 22	Incidental Ingestion of Surface Soil by an Adolescent Trespasser – West Campus
Table 23	Inhalation Exposure to Surface Soil by an Adolescent Trespasser – West Campus
Table 24	Calculations of Blood Lead Concentrations (PbBs) for Construction Workers on the East Campus
Table 25	Calculations of Blood Lead Concentrations (PbBs) for Maintenance Workers on the West Campus
Table 26	Calculations of Blood Lead Concentrations (PbBs) for Adolescent Trespassers on the
14010 20	West Campus
Table 27	Calculations of Blood Lead Concentrations (PbBs) for Construction Workers on the
- /	West Campus
Table 28	Summary of Toxicity Factors
Table 29	Summary of Hazard and Risk Calculations
	J

Figures

Figure 1	Site Location Map
Figure 2	East and West Campus Divisions; Location of Soil Samples
Figure 3	Conceptual Site Model – Soil Exposure Pathway Analysis
Figure 4	Locations of Additional Samples where Impervious Surfaces are being Removed

Plates

Plate 1 Soil Sample Location Map

Appendices

Appendix A Surrogate Reporting Limits for Select COPCs in Soils

Appendix B ProUCL Outputs

List of Acronyms

95% UCL 95% Upper Confidence Limit of the Mean Concentration

ABS Dermal absorption fraction

Act 2 PADEP's Land Recycling and Environmental Remediation Standards Act

ADAF₆₋₁₆ Age-dependent adjustment factor for adolescents aged 6 to 16 years ADAF₁₆₋₁₇ Age-dependent adjustment factor for adolescents aged 16 to 17 years

ADF_{adj} Age-adjusted dermal factor AED Age-adjusted exposure duration AFs Gastrointestinal absorption fraction

AH Soil adherence factor

AH_a Adherence factor for adolescents aged 16 to 17 years AH_c Adherence factor for adolescents aged 6 to 16 years

AIF_{adj} Age-adjusted ingestion factor ALM Adult Lead Methodology

AMF American Machine and Foundry Company

AT Averaging Time

AT_c Carcinogenic Averaging Time AT_n Noncarcinogenic Averaging Time

bgs below ground surface BKSF Biokinetic slope factor

BW Body weight

BW₁₆₋₁₇ Body weight for adolescents aged 16 to 17 years BW₆₋₁₆ Body weight for adolescents aged 6 to 16 years

CF Conversion factor
COCs Chemicals of Concern

COPCs Constituents of Potential Concern Cs Constituent concentration in soil

CSF Cancer Slope Factor
CSM Conceptual Site Model
DLs Detection Limits
ED Exposure duration

 ED_{6-16} Exposure duration for adolescents aged 6 to 16 years ED_{16-17} Exposure duration for adolescents aged 16 to 17 years

EF Exposure frequency
EI Environmental Indicator

ET Exposure time

fYNOP Former York Naval Ordnance Plant

GI Gastrointestinal

GSD_i Geometric standard deviation HHRA Human Health Risk Assessment

HI Hazard Index HQ Hazard Quotient

IEUBK Integrated Exposure Uptake Biokinetic

IngR Soil ingestion rate

IngR_c Soil ingestion rate for adolescents aged 6 to 16 years

List of Acronyms, continued

IngR_a Soil ingestion rate for adolescents aged 16 to 17 years

IRs Soil intake rate

IRIS Integrated Risk Information System

IUR Inhalation Unit Risk

Langan Engineering and Environmental Services

MSCs Medium-Specific Concentrations NIR Notification of intent to remediate NPBA North Property Boundary Area

PADEP Pennsylvania Department of Environmental Protection

PAHs Polycyclic Aromatic Hydrocarbons PbB_{adult.0} Typical blood lead concentration

PbB_{adult.central} Central estimate of blood lead concentrations

PbS Soil lead concentration
PCBs Polychlorinated Biphenyls
PEF Particulate Emission Factor

R_{fetal/maternal} Constant of proportionality between fetal blood lead concentration at birth and

maternal blood lead concentration

RfC Reference Concentration

RfDs Reference Doses

RI Remedial Investigation RLs Reporting Limits

RSLs Regional Screening Levels

SA Skin surface area available for exposure

SA_a Skin surface area available for exposure for adolescents aged 16 to 17 years SA_c Skin surface area available for exposure for adolescents aged 6 to 16 years

SAIC Science Applications International Corporation

SPBA South Property Boundary Area SVOCs Semivolatile Organic Compounds

TDS Total dissolved solids
TF Transport factor

USEPA United States Environmental Protection Agency

VF Volatilization Factor

VOCs Volatile Organic Compounds

YCIDA York County Industrial Development Authority

YNOP York Naval Ordnance Plant

EXECUTIVE SUMMARY

A human health risk assessment was developed for soil at the former York Naval Ordnance Plant (fYNOP) located in York, Pennsylvania. The fYNOP property is currently owned by Harley-Davidson Motor Company Operations, Inc. (Harley-Davidson) and is being used as motorcycle manufacturing facility. Harley-Davidson is seeking relief from liability for soil at the site using Pennsylvania's Land Recycling Program (Act 2) and associated Chapter 250 regulations pertaining to the Statewide Health and Site-Specific Standards.

The western portion of the fYNOP property (West Campus) has been subdivided and is in the process of being sold to the York County Industrial Development Authority (YCIDA). Both the West Campus and the remaining eastern portion of the property (East Campus) will be subject to an environmental covenant restricting future land use to commercial and/or industrial purposes.

As a result of historical operations, residual levels of both inorganic and organic regulated substances have been detected in soil at the site. A conceptual site model concluded that potential current and future receptors on both the East Campus and West Campus included maintenance workers exposed to surface soils, construction workers exposed to surface and subsurface soils, and adolescent trespassers exposed to surface soils. East and West Campus exposures were also combined to assess hazards and risks to potential receptors under current site conditions prior to the West Campus divestiture.

Using a combination of Pennsylvania Department of Environmental Protection (PADEP) Medium-Specific Concentrations (MSCs) and United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs), data were screened to identify the Constituents of Potential Concern (COPCs) to be carried through the quantitative risk assessment process.

Additionally, detected concentrations of COPCs were screened for the presence of "hot spots" of impacted soils. Some hot spots were identified when screened using values of 100 times the USEPA RSLs, however, no hot spots were determined to be present on the property when data were screened against values of 10 times MSCs. Since the hot spots were not located in areas that may receive high traffic relative to other areas of the site, no additional risk evaluation of the hot spot areas was necessary. Exposures to hot spots were evaluated by incorporating hot spot data into the

exposure-point concentration calculations; therefore, the hazards and risks calculated reflect exposures to hot spots as well as other areas of the site.

The risk assessment yielded noncarcinogenic hazards below PADEP's benchmark hazard index of 1.0 and potential carcinogenic risks that did not exceed PADEP's maximum acceptable cumulative risk for the scenarios evaluated in this assessment, including the East Campus and West Campuses individually and combined. Additionally, modeled exposures to lead in soils resulted in calculated blood lead concentrations that were below USEPA's acceptable level. According to the assumptions and methodologies employed herein, there were no unacceptable exposures to soil at the site under current or future land use assumptions, and this risk assessment demonstrates attainment of the site-specific standard for soils for those COPCs evaluated herein. If, at any time, the fYNOP property is used for purposes other than commercial/industrial applications (e.g., residential, recreational), or additional impacts to soil are discovered, or impervious surfaces are breached or removed, a revised risk assessment and/or remediation may be necessary.

1 INTRODUCTION

The former York Naval Ordnance Plant (fYNOP) is located in Springettsbury Township in York County, Pennsylvania, and is currently an active motorcycle manufacturing facility situated on approximately 230 acres. The Site is bordered on the south by Route 30 and residential properties; on the west by Eden Road, a railroad line, and Codorus Creek; and on the east and north by residential properties. A Site location map is provided on Figure 1. The York facility was constructed in 1941 by the York Safe and Lock Company, a United States government contractor, for the manufacture, assembly, and testing of 40-millimeter (mm) twin and quadruple gun mounts, complete with guns. In 1944, the U.S. government took possession of the York facility and owned and operated the property as the York Naval Ordnance Plant (YNOP) until 1964, switching operations after World War II to overhaul war service weapons; make rocket launchers; and manufacture 3-inch/50-caliber guns, 20-mm aircraft guns, and power drive units for 5-inch/54caliber guns. In 1964, the U.S. government sold the York facility to American Machine and Foundry Company (AMF), who continued similar manufacturing. In 1969, Harley-Davidson Motor Company (Harley-Davidson) merged with AMF, a long-time producer of leisure products and, in 1973, Harley-Davidson moved its motorcycle manufacturing operations to the Site. On February 26, 1981, thirteen Harley-Davidson senior executives signed a letter of intent to purchase Harley-Davidson Motor Company from AMF. By mid-June 1981, the buy-back was official. Harley-Davidson has continued motorcycle manufacturing operations at the York facility since that time.

Spills, leakage, and disposal of materials and wastes associated with metal degreasing, painting, and plating operations resulted in the distribution of the primary chemicals of concern (COCs) in soil (SAIC, 2010). Accordingly, Harley-Davidson is pursuing relief from liability for soil at the Site under PADEP's Land Recycling and Environmental Remediation Standards Act (Act 2) and the associated Chapter 250 regulations. In order for Harley-Davidson to receive relief from liability, the Site data and an analysis of these data must demonstrate compliance with one or a combination of the three cleanup standards established in Act 2. This demonstration must be performed following procedures and methods published in the Title 25 PA Code Chapter 250 regulations promulgated by the PADEP to administer the Land Recycling Program. As such, Harley-Davidson has submitted a notification of intent to remediate (NIR) that calls for attaining a combination of two of the three standards established in Act 2 for exposures to contaminated soil: the statewide health standard and the site specific standard.

This human health risk assessment (HHRA) was conducted following PADEP's regulations and guidance to:

- 1. Identify regulated substances present as a result of releases to soil at this Site;
- 2. Determine the constituents of potential concern (COPCs) by screening out those substances that meet the statewide health standard or are present only at de minimis levels;
- 3. Perform a site-specific risk assessment to estimate the potential human health hazards and risks associated with hypothetical exposure to the COPCs in soil at the fYNOP property, and
- 4. Compare the results of that risk assessment to the Act 2 risk-based standards to demonstrate attainment of the site specific standards for soil.

This risk assessment has been prepared in accordance with the requirements of the Pennsylvania Land Recycling and Environmental Remediation Standards Act (Act 2, 1997) and the regulations promulgated by the PADEP under Title 25 PA Code Chapter 250, and is consistent with United States Environmental Protection Agency (USEPA) risk assessment guidance documents, including *Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual, (Part A)* (USEPA, 1989).

A risk assessment for human exposures typically includes the following components [Chapter 250 $\S250.602$ (c) (1) - (4)]:

- (1) Data collection, including source characterization and development of a conceptual site model, and evaluation to identify constituents of potential concern.
- (2) Exposure assessment that considers dermal, ingestion, and inhalation pathways and exposure assumptions based on patterns of land use.
- (3) Toxicity assessment that includes the use of toxicity information from sources identified in Chapter 250 §250.605 (relating to sources of toxicity information).
- (4) Risk characterization that compares the site specific risks to the human health protection goals specified in Chapter 250 §250.402 (relating to human health and environmental protection goals).

The following sections of this report address each of these components individually. In addition, a characterization of the uncertainty associated with the quantitative assessment of risk estimates is discussed in accordance with §250.602(f) of the Act 2 Regulations.

2 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) identifies potential sources and types of contaminants, affected media, current and potential future receptors, and potential exposure pathways. The CSM is used as the foundation on which risk assessment exposure models and assumptions are based. Current and known land use or reasonable potential future land use plays a significant role in the development of the CSM. Land use must be determined before receptor populations can be identified.

The fYNOP site is currently zoned industrial and Harley-Davidson currently operates a motorcycle manufacturing facility on the property. Future use of the site will remain commercial/industrial in accordance with an activity and use limitation placed on the property as part of the Buyer-Seller Agreement dated July 22, 2010 executed between Harley-Davidson and the York County Industrial Development Authority (YCIDA). Under these land-use conditions, current and future on-site maintenance workers (assessed as full-time employees), current and future on-site construction workers, and adolescent trespassers were identified as potential receptors for the site. Given the land-use restrictions in place on the property, residential exposures to soil were not assessed.

Existing buildings and parking lots serve to preclude exposures to underlying surface and subsurface soils thereby rendering associated soil exposure pathways in those areas incomplete. Data collected from beneath buildings and parking lots were, therefore, excluded from this assessment. In the future, should buildings (building slabs) and/or parking lots be removed and underlying impacted soils exposed, an additional risk assessment and/or exposure mitigation measures may be necessary.

On behalf of Harley-Davidson, Langan Engineering and Environmental Services (Langan) has conducted focused evaluations of the fYNOP property for purposes of determining the potential for vapor intrusion to occur both on-site and off-site. These vapor intrusion evaluations have occurred in several phases starting in 2003. While Langan's efforts were focused on groundwater, soil vapor data is applicable to both groundwater and soil vapor intrusion.

In October 2003, Langan collected soil vapor analytical data to determine whether or not the vapor intrusion pathway posed an unacceptable risk to human health at the site as part of a screening assessment (Langan, 2006). Langan's screening assessment followed the USEPA's Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (USEPA,

2002a) and the October 2003 Indoor Vapor Pathway Screening Assessment Workplan that was reviewed and approved by USEPA (Langan, 2006). In a two-phase investigation, Langan conducted soil vapor sampling and analysis to assess the potential vapor intrusion pathway via USEPA's Tier II and Tier III screening process (Langan, 2006). Langan then used the Johnson & Ettinger (1991) model for Subsurface Vapor Intrusion into Buildings to predict indoor air concentrations for inhabited buildings on-site and immediately off-site near the North Property Boundary Area (NPBA) and South Property Boundary Area (SPBA) (Langan, 2006). Based on the soil vapor analytical data and the soil vapor model predictions described in the Indoor Vapor Pathway Screening Assessment, Supplemental RI Report (Langan, 2005), the vapor pathway was not complete and there was no on-site or off-site risk to human health via the vapor intrusion pathway at that time (Langan, 2006). In 2005, USEPA issued a "Yes" determination (indicating that exposures are under control) for the Human Health Environmental Indicator (EI) form that takes into account the vapor intrusion pathway. Despite this determination, in response to Langan's efforts, the USEPA provided several comment letters regarding the vapor intrusion assessment. Langan has addressed USEPA's comments and the conclusions of the vapor intrusion assessment have not substantially changed. Accordingly, vapor intrusion was not considered a complete exposure pathway for this assessment and indoor air vapor intrusion exposures were not evaluated for indoor workers at the property. In the future, should new buildings be constructed on the property or the land use changes, additional investigations and/or risk evaluations of vapor intrusion exposures may be necessary and the conclusions of this vapor intrusion assessment may change.

The fYNOP campus has been subdivided into two parcels, East Campus (172 acres) and West Campus (58 acres), and the West Campus has been sold and is being transferred to the YCIDA. While future use of the West Campus will remain commercial/industrial (in accordance with environmental covenants being placed on the property), the specific nature of the redevelopment of that parcel is unknown at this time. Harley-Davidson will continue to manufacture motorcycles on the East Campus into the foreseeable future. Future land uses may differ between the East Campus and West Campus as they will be under different ownership, although both will remain commercial/industrial. Potential receptors associated with the Harley-Davidson facility will likely be limited to exposures to soils on the East Campus whereas potential receptors associated with the YCIDA property will likely be limited to exposures to soils on the West Campus. It is not likely that, in the future, a given receptor will be accessing both the East and West Campus equally.

Accordingly, for purposes of this risk assessment, the fYNOP property has been divided into two exposure units, East Campus and West Campus, so that exposures on each parcel may be assessed independently to be consistent with future land use (Figure 2).

An on-site maintenance worker was considered to be a full-time employee located on either campus. This receptor represents one of the most maximally exposed individuals on the properties because he/she was assumed to be an outdoor worker in direct contact with soils on a very frequent basis during the course of a long-term (e.g., 25-year) employment tenure. Other employees, such as indoor workers, would not likely come into direct contact with impacted soils on any regular basis, and certainly not as frequently as that assumed for the maintenance worker scenario. For these reasons, the maintenance worker scenario was considered protective of other worker scenarios relative to exposures relating to direct contact with soil. The on-site maintenance worker on both the East and West Campus may potentially be exposed to constituents of concern in shallow soils (0-2 feet below ground surface [bgs]) through the dermal, oral, and inhalation exposure routes. Inhalation exposures may occur to both volatile constituent vapors in ambient air and to non-volatile constituents entrained onto dust particles in ambient air. These complete pathways were evaluated herein.

Construction workers were assumed to be contractors with temporary access to the property during short-term (i.e., less than one year) construction projects. Construction workers on both the East and West Campus may be exposed to both surface and subsurface soils during excavation and construction activities through the dermal, oral, and inhalation (of both volatile vapors and dust-entrained non-volatiles) exposure routes. These complete pathways were evaluated herein for the soil depth of zero to 15 feet bgs. It was appropriate to combine the zero to 2 feet bgs and 2 to 15 feet bgs soil depth intervals into a single zero to 15 feet bgs depth interval because construction workers would necessarily contact soils in the zero to 2 feet bgs range in the process of gaining access to the soils at the 2 to 15 feet bgs depth. Accordingly, the appropriate soil depth range to use for the construction workers scenarios was zero to 15 feet bgs.

The adolescent trespasser represents an individual, aged 6 to 17 years, who may be trespassing or otherwise visiting the East or West Campus on an infrequent basis. This individual may be exposed to surface soils (0 to 2 feet bgs) through the dermal, oral, and inhalation exposure routes. As with the other receptors described above, inhalation exposures may occur to both volatile constituent

vapors in ambient air and to non-volatile constituents entrained onto dust particles in ambient air. These exposure routes were assessed herein.

In summary, the following exposure scenarios were evaluated in this assessment:

- Maintenance Worker exposures to surface soil East Campus
- Maintenance Worker exposures to surface soil West Campus
- Construction Worker exposures to surface and subsurface soil East Campus
- Construction Worker exposures to surface and subsurface soil West Campus
- Adolescent Trespasser exposures to surface soil East Campus
- Adolescent Trespasser exposures to surface soil West Campus

Figure 3 presents a graphical version of the Conceptual Site Model.

3 DATA ANALYSIS

Based on the outcome of the conceptual site model, soil data from the fYNOP property were divided into four data sets: surface soil from zero to 2 feet bgs in the East Campus, surface and subsurface soil from zero to 15 feet bgs in the East Campus, surface soil from zero to 2 feet bgs in the West Campus, and surface and subsurface soil from zero to 15 feet bgs in the West Campus.

Soil data collected between 1987 and 2008 were evaluated for this assessment. Details of the soil samples used in the data analysis are presented on Plate 1. In some instances, due to the age of the data, sample reporting limits (RL) and/or detection limits (DL) were not available for non-detect results. In these cases, professional judgment was used to select an RL or DL for those samples based on existing RLs or DLs from the same data set for non-detect results of the same analyte. An effort was made to select reliable RLs or DLs that were relatively high to be conservative while avoiding RLs and DLs that may have been elevated as a result of analytical issues. The surrogate RLs/DLs were only used on those samples and COPCs for which these values were not available in the project database; not all COPCs required the use of surrogate RLs/DLs. The selected surrogate RLs/DLs used for affected COPCs in each data set are presented in Appendix A.

Existing buildings and parking lots serve to preclude exposures to underlying surface and subsurface soils thereby rendering associated exposure pathways in those areas incomplete. Data collected from beneath buildings and parking lots were, therefore, excluded from this assessment. Current demolition plans for the North Plant area of the property, including small portions of both the East and West Campus, are resulting in the removal of the Quonset buildings and associated macadam. As a result, some sample locations under impervious surfaces in this area will no longer be under cover. These sample locations are identified in Figure 4 and have been added to the East and West Campus data sets for evaluation in the risk assessment.

3.1 COPC Screening

A screening process was employed to determine which regulated substances from each data set should be carried through the quantitative human health risk assessment. The purpose of the screening process was to identify those regulated substances that may potentially contribute a large majority of the health hazard or risk (COPCs) for each receptor while eliminating those substances that are not likely to contribute significantly to overall hazard and risk calculations. The first step of

the screening process eliminated from each of the four data sets those substances corresponding to analytes that were not detected in the data set.

The next step of the screening process compared the maximum detected concentrations of each regulated substance in each data set to PADEP medium-specific concentrations (MSCs). The MSCs used in this assessment reflect the regulatory revisions made to Chapter 250 effective January 8, 2011. To determine the comparative MSCs for soils, a non-residential, used aquifer with total dissolved solids (TDS) less than 2500 mg/kg was assumed. While this risk assessment only addresses human exposures to soil at the site, the PADEP requires that the soil screening process include soil-to-groundwater MSCs as described below. Direct and indirect exposures to site groundwater will be addressed in a risk assessment report submitted under separate cover.

Under the non-residential, used aquifer with TDS less than 2500 mg/kg groundwater use category, the soil-to-groundwater MSC was selected using the greater of the soil-to-groundwater generic MSC and 100 times the groundwater MSC. Then, the lesser of the identified soil-to-groundwater MSC and the direct contact non-residential MSC was selected as the comparative MSC for soil. Regulated substances with maximum detected concentrations that exceed the comparative MSC were retained for additional screening. Regulated substances with maximum detected concentrations that were less than the comparative MSC were eliminated from the quantitative risk assessment process.

For those substances that were retained after the MSC screen, maximum detected concentrations were then compared to the USEPA's health-based Regional Screening Levels (RSLs) for industrial scenarios. This additional level of screening was employed in an effort to eliminate from the risk assessment those constituents that may have been retained during the MSC screen because of relatively low soil-to-groundwater MSCs but that otherwise may not present significant risks to human health as a result of direct contact with soils.

The most current RSLs, published in November 2011 (USEPA, 2011b), were used. If the maximum detected concentration exceeded the RSL, that substance was retained for the quantitative risk assessment. If the maximum detected concentration was less than the RSL, that substance was eliminated from the risk assessment process. This process was conducted for each of the four data sets, and the resulting COPCs identified in each data set were as follows:

East Campus Soils 0-2 feet bgs

Tetrachloroethene

West Campus Soils 0-2 feet bgs

Arsenic Cadmium Chromium Lead Thallium

Dimethylphthalate Tetrachloroethene Trichloroethene

East Campus Soils 0-15 feet bgs

Arsenic Chromium

Hexavalent chromium

Lead Thallium

1.2-Dichloroethane Tetrachloroethane

Vinyl Chloride

West Campus Soils 0-15 feet bgs

Antimony Arsenic Cadmium Chromium Lead Thallium Zinc

Aroclor 1254 Benzo(a)pyrene Dimethylphthalate Hexachlorobenzene Tetrachloroethene Trichloroethene

Tables 1 through 4 summarize the screening process.

Once the COPCs were identified, a statistical analysis was conducted on each COPC to determine the exposure-point concentration to be used in the risk assessment. The exposure-point concentration is the concentration of a constituent in a medium (e.g., soil) that is reasonably expected to be contacted by an individual over time and is assumed to be universally present throughout the site (USEPA, 1989). As a result of the uncertainty associated with estimates of exposures concentrations, the 95% upper confidence limit of the mean concentration (95% UCL) is typically used for this variable (USEPA, 1989). In instances where detected data are very limited, it may be appropriate to use the maximum detected concentration as the exposure point concentration in the absence of a 95% UCL.

Summary statistics and 95% UCLs were calculated for each COPC in each data set using USEPA's Pro UCL software (version 4.00.05). The ProUCL outputs are presented in Appendix B.

Table 5 summarizes the maximum detected concentration, the mean concentration, the 95% UCL, the percentage of data that were non-detect, the estimated data distribution, and the exposure point concentration for each COPC in each data set. Due to the paucity of detected results for dimethylphthalate and hexachlorobenzene in West Campus soils, the maximum detected concentrations of these substances were used as the exposure-point concentrations in the absence of 95% UCLs.

For lead in soils, the average concentration of lead was used as the exposure-point concentration in accordance with USEPA guidance (USEPA, 2003). The lead exposure point concentrations are also presented on Table 5.

3.2 Hot Spot Evaluation

In some cases, environmental contamination may be unevenly distributed across a site resulting in "hot spots" or areas of elevated COPC concentrations relative to the rest of the site (USEPA, 1989). These areas may require further risk evaluation, characterization, and/or remediation, depending on their location and concentration as well as future site use and development and existing remediation plans. Accordingly, a hot spot evaluation was conducted for surface and subsurface soils (zero to 15 feet bgs) to determine if hot spots are present on the property.

In the absence of USEPA or PADEP guidance on defining or identifying hot spots, for this analysis, hot spots were determined to be those areas where detected COPC concentrations exceeded 10 times the PADEP Direct Contact soil MSC for non-residential scenarios or 100 times the USEPA's industrial soil RSL. The hot spot screening levels of 10 times the Direct Contact MSC and 100 times the RSL are equivalent to screening the detected results against a health-based criterion that corresponds to a risk level of 1×10^{-4} or a hazard level greater than 1.0. Exceedances of these hazard and risk levels would be deemed unacceptable to both the PADEP and USEPA and, as such, the use of these values as hot spot screening levels was determined to be a reasonable and appropriate approach to defining hot spots.

Detected concentrations of those COPCs identified through the COPC screening process (see the previous section) for both the East Campus and West Campus were first screened against the

USEPA hot spot screening levels discussed above. The reported results from the following sample locations exceeded 100 times the USEPA's industrial soil RSL:

East Campus Soils from 0-15 feet bgs:

Sample ID	Depth	COPC	Result (mg/kg)	Date Sampled
SB-13-6	6 ft	Tetrachloroethene	660	10/2/2002
NTT-SG25a	0.5 - 1 ft	Tetrachloroethene	403	12/21/1999

West Campus Soils from 0-15 feet bgs:

Sample ID	Depth	COPC	Result (mg/kg)	Date Sampled
HD-WPL-SB-095-05-0	0.5 - 2.5 ft	Aroclor 1254	270	4/26/2007
WPL-SG-33a	2- 2.5 ft	Arsenic	221	12/29/1999
WPL TP-5	3 - 3.5 ft	Benzo (a) pyrene	74	11/26/1999
BPA TP-1a	6.5 - 7 ft	Benzo (a) pyrene	21.3	12/7/1999
HD-B4ND-SB-014-15-0	13 – 15 ft	Tetrachlorethene	1400	7/23/2007
WPL-15-B-3	6 ft	Chromium*	8200	7/23/1991
HD-WPL-TP-037-05-0	5 ft	Chromium*	6860	2/27/2004
HD-WPL-SB-024-02-0	0.5 - 2 ft	Chromium*	3820	2/13/2004
WPL TP-6	5.5 - 6 ft	Chromium*	3380	11/26/1999
HD-ER-SD-02-03-0	3 ft	Chromium*	2230	8/18/2004
HD-WPL-SB-095-05-0	0.5 - 2.5 ft	Chromium*	1670	4/26/2007
TANK 3 NW 9	9 ft	Chromium*	1100	11/7/2000
WPLSS-15 6-7	6 - 7 ft	Chromium*	1100	6/19/1991
HD-SS-9-02-00	4 ft	Chromium*	781	7/30/2004

^{*}As a conservative measures, 100 times the USEPA RSL for hexavalent chromium was used for the hot spot screening level. If the RSL for trivalent chromium was used, these sample locations would have passed the screening process and would not be considered hot spots.

COPCs were then screened against 10 times the PADEP MSCs as described above. There were no detected concentrations of COPCs that exceeded the MSC hot spot screening level.

According to the USEPA, hot spots should be evaluated separately in a risk assessment if the hot spot locations are in areas of the site that may be visited or used more frequently than other areas because of site or population characteristics (USEPA, 1989). The locations of the hot spots identified above are not in areas that may be accessed more frequently by the receptors identified in this report (Figure 4); therefore, it was determined that a separate risk analysis of hot spots was not necessary.

Additionally, while it was not appropriate to assess exposure to hot spots separately in this report, the identified hot spot locations were included in the data sets used for the evaluation of site hazards and risks as described in detail in the following sections. That is, the hot spot data were included in the statistical analysis of site data for each campus and, therefore, were incorporated into the estimate of exposure point concentrations (95% UCLs), subsequent intake calculations, and estimates of hazards and risks. Therefore, those hazards and risks calculated herein reflect exposures to hot spots as well as other areas of the site.

4 EXPOSURE ASSESSMENT

An exposure pathway is the course a chemical takes from its source to the exposed receptor. In order for an exposure pathway to be complete, it must contain a source, a transport medium (*e.g.*, soil, groundwater, *etc.*), a point-of-contact (receptor), and an exposure route (*e.g.*, ingestion, dermal, or inhalation). If any of these elements is not present, an exposure pathway is deemed incomplete and the chemical can be excluded from the quantitative evaluation of risk (USEPA, 1989). This evaluation identified three receptor populations that may result in complete exposure pathways for soil – maintenance workers, construction workers, and adolescent trespassers (see Section 2.0).

Chemical exposure/intake is expressed as the amount of the agent at the exchange boundaries of an organism (*e.g.*, skin, lungs, intestinal tract) that is available for systemic absorption. If the exposure occurs over time, the total exposure can be divided by the time-period of interest to obtain an average exposure rate (*e.g.*, mg/kg-day). This exposure rate (intake) was calculated for the dermal and oral exposure routes. For the inhalation exposure route, current USEPA guidance (USEPA, 2009a) recommends the calculation of an exposure concentration instead of an intake rate, and this approach was used herein.

4.1 Assessment of Mutagens

The USEPA has provided specific guidance on the assessment of childhood cancer risks associated with certain carcinogenic constituents that act through a mutagenic mode of action (mutagens). According to an analysis of available studies on mutagens, the USEPA has determined that higher cancer risks result from a given exposure occurring early in life (between the ages of 0 and 16) when compared with the same amount of exposure during adulthood (after the age of 16). As such, the methodology suggested in the USEPA guidance weighs childhood exposures to mutagens differently depending on the lifestage or age group. The USEPA recommends incorporating age-dependent adjustment factors [(ADAFs), depending on the age group] into the risk assessment exposure calculations to take into account the increased susceptibility of individuals to cancer when exposed to mutagens in early life (USEPA, 2005). These adjustment factors range from 10.0 for the ages between 0 and 2 years, 3.0 for the ages between 2 years and 16 years, and 1.0 for the ages older than 16 years. The PADEP has adopted this USEPA guidance in its most recent 2011 Chapter 250 regulations (§250.301, §250.306, and §250.307).

This risk assessment included two adolescent receptors to which the USEPA guidance on early-life exposures is applicable: adolescent trespasser on the East Campus and adolescent trespasser on the West Campus. These scenarios assessed exposures to adolescents aged 6 to 17 years. The only COPC selected through the screening process for adolescent trespassers on the East Campus was tetrachloroethene. Tetrachloroethene is not currently considered a mutagen by the USEPA or PADEP; therefore, the USEPA guidance on early life exposures was not implemented for that scenario. Exposures to COPCs classified as mutagens were assessed for the adolescent trespasser scenario on the West Campus. The following two mutagenic COPCs were assessed for that scenario: chromium, and trichloroethylene. PADEP's and USEPA's age-dependent adjustment factors were incorporated into the estimates of intake for these four COPCs for the scenario of adolescent trespasser at the West Campus. Consistent with USEPA and PADEP guidance and regulations, for the age range of 6 to 16 years, an adjustment factor of 3.0 was used, and for the age range of 16 to 17 years, an adjustment factor of 1.0 was used. The specific use of age-dependent adjustment factors for each exposure route (dermal, oral, and inhalation) is described in more detail in Section 4.3 below.

4.2 General Exposure Parameters

The exposure parameters described below and associated intake calculations are presented on Tables 6 through 24 for each receptor and exposure route for each exposure unit (East and West Campus). While some of the exposure parameters used to estimate intake are exposure route-specific, others are general parameters that remain constant for each exposure route (e.g., dermal and inhalation) and are present in each intake calculation. These general exposure parameters are discussed below and route-specific exposure parameters are discussed in the following section (Section 4.3).

Exposure point concentration, exposure frequency, exposure duration, averaging time, and body weight are general parameters that are specific to a receptor but do not vary between exposure routes for a given receptor.

The exposure point concentration for each substance in soil for each receptor was discussed above and is presented on Table 5.

The exposure frequency describes the number of times per year an event is likely to occur and is expressed in units of shifts/year or events/year for non-residential scenarios. Variables such as weather, vacations, and institutional controls are considered when determining reasonable and realistic exposure frequencies. For the maintenance worker scenario, an exposure frequency of 180 shifts/year was used consistent with PADEP regulations (Chapter 250 §250.306 and 250.307). A value of 60 shifts/year, based on best professional judgment, was used for the construction worker scenario. A value of 24 events/year was used for the adolescent trespasser conservatively assuming a visit to the site each weekend day during the three summer months of June, July, and August.

The exposure duration parameter in the intake equation represents the number of years over which an event is likely to occur. Factors affecting this parameter include variables such as age of receptor and population mobility. As recommended by the PADEP, an exposure duration of 25 years was used for the maintenance worker scenario (Chapter 250 §250.306 and 250.307). For construction activities that are typically less than one year, common risk assessment practice is to use an exposure duration of 1 year (USEPA, 2010). The adolescent trespasser was assumed to be between the ages of 6 and 17, therefore, the exposure duration for this receptor was 12 years.

The averaging time (AT) parameter is the period over which exposure is averaged. For noncarcinogenic effects, noncarcinogenic averaging time (AT_n) was used in calculating an average daily exposure, and is the product of the exposure duration and 365 days/year. Accordingly, for the maintenance worker, the noncarcinogenic averaging time was 9,125 days. For the construction worker, the AT_n value was 60 days, equivalent to the exposure frequency. The AT_n value for the adolescent trespasser was 4,380 days. The carcinogenic averaging time (AT_c) was the product of a 365-day year and a 70-year lifetime, or 25,550 days for each receptor in accordance with Chapter 250 regulations (Chapter 250 §250.306 and §250.307; 70 years is considered a typical lifetime and is used to assess exposures to carcinogens by both USEPA and PADEP). For inhalation exposures, these averaging times were converted to units of hours.

The body weight used for the adult receptors was 70 kg in accordance with PADEP regulations (Chapter 250 §250.306 and §250.307). For the adolescent trespasser, the body weight used for assessing exposures to non-mutagens was 45.36 kg, based on the average body weights of male and female children aged 6 to 17 years from Table 8-10 of USEPA's *Exposure Factors Handbook* (2011a). For adolescent trespasser exposures to mutagens, different body weights were used for the

two different age groups considered in the mutagen risk calculations. The average body weight for the adolescent trespasser aged 6 to 16 years was 43.35 kg while the body weight for the adolescent trespasser aged 17 years was 67.5 kg (USEPA, 2011a).

4.3 Route-Specific Exposure Parameters

Intakes due to contact with COPCs vary depending largely on the physicochemical properties of the COPC and the route by which the COPC enters the body. Dermal contact and incidental ingestion exposure-specific parameters take these differences into account and are addressed in this section.

Dermal Exposures to Soil (Non-Mutagens)

COPC intake as a result of dermal exposure to soil was estimated for non-mutagen COPCs using the following equation (USEPA, 2004):

$$Intake \left(mg/kg - day \right) = \frac{Cs \times SA \times AH \times ABS \times ED \times EF \times CF}{BW \times AT}$$

where:

Cs = COPC concentration in soil (mg/kg)

SA = Skin surface area available for exposure (cm²/day, event, or shift)

AH = Soil adherence factor (mg/cm²)

ABS = Dermal absorption fraction (unitless)

ED = Exposure duration (years)

EF = Exposure frequency (days/year)CF = Conversion factor (1x10⁻⁶ kg/mg)

BW = Body weight (kg)

AT = Averaging time (days)

The exposure-point concentration for soil was discussed in Section 3.0. The exposure duration, exposure frequency, body weight, and averaging time parameters were described in Section 4.1.

To calculate dermal intakes, the skin surface area available for exposure was estimated. For both the maintenance worker and construction worker scenarios, exposed body parts were assumed to include the head, hands, and forearms since these receptors were expected to wear short-sleeved shirts, long pants, and shoes. Accordingly, the exposed skin surface area for these adult receptors was 3,300 cm² as recommended by USEPA guidance (2004). The adolescent trespasser was

assumed to wear a short-sleeved shirt, shorts, and shoes thereby exposing the face, hands, forearms, legs, and lower legs comprising approximately 7,548 cm² as based on data for children aged 6 to 17 years from USEPA (2004).

The soil-to-skin adherence factor represents the amount of soil that adheres to the skin and is measured in units of mg of soil per cm² of skin surface area. This factor is influenced by soil types and varies considerably across different parts of the body (USEPA, 2004) and activity levels. Based on data for different types of activities provided in USEPA guidance, an adherence factor of 0.04 mg/cm² (representing landscaping-type activities) was selected for the maintenance worker. An adherence factor of 0.3 mg/cm² was selected for the construction worker scenario and is based on studies of actual construction workers (USEPA, 2004). For the adolescent trespasser scenario, an adherence factor of 0.04 mg/cm² was used representing teen soccer players (USEPA, 2004).

While COPCs may come into direct contact with the skin during the course of exposure (administered dose), only a fraction of the constituent may actually penetrate the skin barrier and enter the body (absorbed dose). To account for the effectiveness of the skin as a barrier to the absorption of COPCs, a dermal absorption fraction is applied to the intake equation. USEPA recommends several dermal absorption fractions for specific analytes and for classes of analytes (USEPA, 2004). These values were used in this assessment and included the following: arsenic – 0.03; cadmium – 0.001; benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAHs) – 0.13; Aroclors 1254 and 1242 and other Polychlorinated Biphenyls (PCBs) – 0.14; and semivolatile organic compounds (SVOCs) – 0.1. The USEPA does not provide dermal absorption fractions for volatile organic compounds (VOCs) stating that VOCs would tend to be volatilized from the soil on the skin (USEPA, 2004). Additionally, the USEPA does not provide dermal absorption fractions for many inorganic constituents because speciation is critical to dermal absorption and sufficient data do not exist for most inorganics on which to determine dermal absorption (USEPA, 2004). The dermal absorption fraction for VOCs and inorganics other than arsenic and cadmium was set to zero in keeping with USEPA guidance (2004).

Dermal Exposures to Soil (Mutagens)

For the scenario of trespasser at the West Campus, the following equations were used to estimate dermal intake of COPCs classified by the USEPA and PADEP as mutagens (based on equations in USEPA Regional Screening Level User's Guide, 2011b):

Average Lifetime Daily Intake
$$(mg/kg - day) = \frac{Cs \times EF \times ADF_{adj} \times ABS \times CF}{AT_c}$$

where:

Cs = COPC exposure-point concentration in soil (mg/kg)

EF = Exposure frequency (days/year)

 $ADF_{adj} = Age-adjusted dermal factor (mg-year/kg-day)$

ABS = Dermal absorption fraction (unitless) CF = Conversion factor $(1x10^{-6} \text{ kg/mg})$ AT_c = Averaging time for carcinogens (days)

The exposure-point concentration for soil was discussed in Section 3.0. The exposure frequency and averaging time parameters were discussed in Section 4.1. The dermal absorption fraction was discussed above. The age adjusted dermal factor was used to adjust dermal intake rates according to different life stages, as discussed in Section 4.0. For the trespasser scenario, the age adjusted dermal factor was calculated as follows:

$$ADF_{adj} = \frac{ADAF_{6-16} \times ED_{6-16} \times AH_c \times SA_c}{BW_{6-16}} + \frac{ADAF_{16-17} \times ED_{16-17} \times AH_a \times SA_a}{BW_{16-17}}$$

where:

ADAF₆₋₁₆ = Age-dependent adjustment factor for adolescents aged 6 to 16 years (unitless)

 ED_{6-16} = Exposure duration for adolescents aged 6 to 16 years (years) AH_c = Adherence factor for adolescents aged 6 to 16 years (mg/cm²)

SA_c = Skin surface area available for exposure for adolescents aged 6 to 16 years

(cm²/day)

 BW_{6-16} = Body weight for adolescents aged 6 to 16 years (kg)

 $ADAF_{16-17}$ = Age-dependent adjustment factor for adolescents aged 16 to 17 years

(unitless)

 ED_{16-17} = Exposure duration for adolescents aged 16 to 17 years (years) AH_a = Adherence factor for adolescents aged 16 to 17 years (mg/cm²)

SA_a = Skin surface area available for exposure for adolescents aged 16 to 17 years

(cm²/day)

 BW_{16-17} = Body weight for adolescents aged 16 to 17 years (kg)

The body weight parameters were discussed in Section 4.1 and were based on the child body weight for adolescents aged 6 to 16 years and the adult body weight for adolescents aged 16 to 17 years. The ADAF value for adolescents aged 6 to 16 years was 3.0 and the ADAF value for adolescents aged 16 to 17 years as 1.0 as discussed in Section 4.0. The exposure duration for adolescents aged 6 to 16 years was 11 years while the exposure duration for adolescents aged 16 to 17 years was one year. The adherence factor for adolescents aged 6 to 16 years and the adherence factor for adolescents aged 16 to 17 years were both 0.04 mg/cm² as discussed above. This value was kept the same for the both of the adolescent life phases of the trespasser scenario because the soccer player activity level on which the adherence factor was based seemed appropriate for both age ranges. The skin surface area available for exposure for adolescents aged 6 to 16 years, 7,548 cm², was also discussed above. The skin surface area available for exposure for adolescents aged 16 to 17 years was estimated to be 5,200 cm², based on adult skin surface areas for the face, hands, forearms, and lower legs as taken from USEPA's *Exposure Factors Handbook* (2011a).

The resulting age-adjusted dermal factor was 223 mg-year/kg-event.

Incidental Ingestion of Soil (Non-Mutagens)

Soil ingestion intake levels were calculated for non-mutagen COPCs using the following equation (USEPA, 1989):

$$Intake (mg/kg - day) = \frac{Cs \times IngR \times EF \times ED \times CF}{BW \times AT}$$

where:

Cs = COPC exposure-point concentration in soil (mg/kg)

IngR = Soil ingestion rate (mg/day)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)

 $CF = Conversion factor (1x10^{-6} kg/mg)$

BW = Body weight (kg)

AT = Averaging time (days)

The exposure-point concentration in soil was discussed in Section 3.0. The exposure frequency, exposure duration, body weight, and averaging time parameters were discussed in Section 4.1.

For incidental ingestion exposures to soil, a soil ingestion rate was employed to determine COPC intake. The PADEP Chapter 250 regulations stipulate a soil ingestion rate of 50 mg/day for on-site workers (Chapter 250 §250.306); therefore, this value was adopted for the maintenance worker scenarios. This value, however, may not be appropriate for a construction worker who engages in more soil contact-intensive activities. A more appropriate value for a construction worker, as presented in USEPA guidance (USEPA, 2002b), is a soil ingestion rate of 330 mg/day and this value was adopted from the USEPA for this assessment for the construction worker scenarios. In the absence of guidance on appropriate soil ingestion rates for adolescent trespassers, PADEP's outdoor worker value of 50 mg/day (Chapter 250 §250.306) was adopted for the adolescent trespasser scenario.

Incidental Ingestion of Soil (Mutagens)

For the adolescent trespasser scenario at the West Campus, the following equations were used to estimate oral intake of COPCs classified by the USEPA and PADEP as mutagens (based on equations in PADEP Chapter 250 §250.306):

Average Lifetime Daily Intake
$$(mg/kg - day) = \frac{Cs \times EF \times AIF_{adj} \times CF}{AT_c}$$

where:

Cs = COPC exposure-point concentration in soil (mg/kg)

EF = Exposure frequency (events/year)

AIF_{adj} = Age-adjusted ingestion factor (mg-year/kg-event)

 $CF = Conversion factor (1x10^{-6} kg/mg)$

 AT_c = Averaging time for carcinogens (days)

The soil exposure-point concentration was discussed in Section 3.0 and the exposure frequency and averaging time parameters were discussed in Section 4.1. The age adjusted ingestion factor was used to adjust ingestion intake rates according to different life stages, as discussed in Section 4.0. For the adolescent trespasser scenario, the age adjusted ingestion factor was calculated as follows:

$$\begin{split} AIF_{adj}(mg - year/kg - event) \\ &= \frac{ADAF_{6-16} \times ED_{6-16} \times IngR_c}{BW_{6-16}} + \frac{ADAF_{16-17} \times ED_{16-17} \times IngR_a}{BW_{16-17}} \end{split}$$

where:

 $ADAF_{6-16}$ = Age-dependent adjustment factor for adolescents aged 6 to 16 years (unitless)

ED₆₋₁₆ = Exposure duration for adolescents aged 6 to 16 years (years) IngR_c = Soil ingestion rate for adolescents aged 6 to 16 years (mg/event)

 BW_{6-16} = Body weight for adolescents aged 6 to 16 years (kg)

 $ADAF_{16-17}$ = Age-dependent adjustment factor for adolescents aged 16 to 17 years

(unitless)

 ED_{16-17} = Exposure duration for adolescents aged 16 to 17 years (years) $IngR_a$ = Soil ingestion rate for adolescents aged 16 to 17 years (mg/event)

 BW_{16-17} = Body weight for adolescents aged 16 to 17 years (kg)

The body weight parameters were discussed in Section 4.1 and were based on the child body weight for adolescents aged 6 to 16 years and 16 to 17 years. The ADAF value for adolescents aged 6 to 16 years was 3.0 and the ADAF value for adolescents aged 16 to 17 years as 1.0 as discussed in Section 4.0. The exposure duration for adolescents aged 6 to 16 years was 11 years while the exposure duration for adolescents aged 16 to 17 years was one year. The soil ingestion rate was set to 100 mg/day for both the 6 to 16 year age group and the 16 to 17 year age group as this soil ingestion level seemed appropriate for both age groups within the adolescent trespasser scenario.

The resulting age-adjusted ingestion factor was 74.2 mg-year/kg-event for the adolescent trespasser scenario.

Inhalation Exposures (Non-Mutagens)

Soil inhalation intake levels were calculated for non-mutagen COPCs using the following equation (USEPA, 2009):

Exposure concentration for non – carcinogens
$$\left(\frac{mg}{m^3}\right) = \frac{Cs \times EF \times ED \times ET}{AT_n \times TF}$$

Exposure concentration for carcinogens
$$\left(\frac{\mu g}{m^3}\right) = \frac{Cs \times ED \times EF \times ET \times 1000 \frac{\mu g}{mg}}{AT_c \times TF}$$

where:

Cs = COPC exposure-point concentration in soil (mg/kg)

EF = Exposure frequency (days/year)

ED = Exposure duration (years)
ET = Exposure time (hours/day)
AT = Averaging time (hours)

TF = Transport factor $((mg/kg)/(mg/m^3))$

The soil exposure-point concentration was discussed in Section 3.0. The exposure frequency, exposure duration, and averaging time parameters were discussed above in Section 4.1.

Under current USEPA guidance, inhalation exposures are a function of exposure time (USEPA, 2009a). As such, an exposure time of 8-hours per day was used to represent a typical work day for both the maintenance worker and construction worker scenarios. This value is also consistent with PADEP regulations (Chapter 250 §250.307). An exposure time of four hours per day was used for the adolescent trespasser scenario based on best professional judgment.

To estimate inhalation exposures, transport factors were used to convert soil exposure point concentrations to ambient air concentrations. Two types of transport factors were employed herein – a particulate emission factor (PEF) for non-VOCs and a volatilization factor (VF) for VOCs. Each of these factors is described in more detail below.

A VF was used to estimate the air concentration of VOCs for use in determining inhalation exposures to VOCs in soil. The soil exposure point concentration for a VOC was divided by the VF to estimate the air concentration that may be inhaled by a receptor. The compound-specific VFs were extracted from PADEP Chapter 250 regulations (Tables 5A and 5B). The PADEP provides VFs for both surface and subsurface soil. For the maintenance worker and adolescent trespasser scenarios, VFs for surface soil were employed since soil exposure to these receptors would likely be limited to surface soil. The construction worker may be exposed to both surface and subsurface soil; therefore, the more conservative VF for surface soil was also used for the construction worker scenarios.

A PEF was used to estimate the air concentration of non-VOCs. The air concentration of a non-VOC to be inhaled by each receptor was estimated by dividing the soil concentration by the PEF. The air concentration was then used to estimate compound intakes. Chapter 250 stipulates a PEF value of 1×10^{10} (mg/kg)/(mg/m³) (Chapter 250 §250.307) and this value was used herein for non-volatile COPCs.

Inhalation Exposure (Mutagens)

For the West Campus adolescent trespasser scenario, the following equations were used to estimate inhalation intake of COPCs classified by the USEPA and PADEP as mutagens (based on equations in PADEP Chapter 250 §250.307):

Exposure Concentration
$$(\mu g/m^3) = \frac{Cs \times AED \times EF \times ET \times 1000 \,\mu g/mg}{AT_c \times TF}$$

where:

Cs = COPC exposure-point concentration in soil (mg/kg)

AED = Age-adjusted exposure duration (years)

EF = Exposure frequency (days/year) ET = Exposure time (hours/day)

 AT_c = Averaging time for carcinogens (hours) TF = Transport factor $((mg/kg)/(mg/m^3))$

The soil exposure-point concentration was discussed in Section 3.0. The exposure frequency, exposure duration, and averaging time parameters were discussed in Section 4.1. The transfer factor was discussed above. The AED parameter was calculated as follows:

$$Aged-adjusted\ exposure\ duration\ (years)$$

$$= (ADAF_{6-16} \times ED_{6-16}) + (ADAF_{16-17} \times ED_{16-17})$$

where:

ADAF₆₋₁₆ = Age-dependent adjustment factor for adolescents aged 6 to 16 years (unitless)

 ED_{6-16} = Exposure duration for adolescents aged 6 to 16 years (years)

 $ADAF_{16-17}$ = Age-dependent adjustment factor for adolescents aged 16 to 17 years

(unitless)

 ED_{16-17} = Exposure duration for adolescents aged 16 to 17 years (years)

The ADAF factors were 3.0 for the ages between 6 and 16 and 1.0 for the ages between 16 and 17 as discussed in Section 4.0. The exposure duration for the ages between 6 and 16 years was 11 years and the exposure duration for the ages between 16 and 17 years was 1 year. The resulting age-adjusted exposure duration was 34 years.

4.4 Assessment of Lead Exposures

Lead was identified as a COPC in both East Campus soils (0-15 feet bgs) and West Campus soils (0-2 feet bgs and 0-15 feet bgs). The USEPA has not developed toxicity values for lead that can be used in traditional risk assessment intake equations. Instead, to evaluate lead exposures to adults under non-residential exposure scenarios, the USEPA has developed an approach relating exposures to lead in soils to blood lead concentrations (USEPA, 2003). USEPA's Adult Lead Methodology (ALM) uses a simplified representation of lead biokinetics to predict quasi-steady state blood lead concentrations among adults who have relatively steady patterns of site exposures (USEPA, 2003). The adult receptor of concern considered in the ALM is a woman of child-bearing age. The ALM was first used to calculate the blood lead concentration of an adult as a result of exposure to site soils, and that adult blood lead concentrations was then used to estimate the blood lead concentration of a developing fetus, the most sensitive receptor to be protected. The following algorithm was used to estimate central tendency blood lead levels in adult women (USEPA, 2003):

$$PbB_{adult,central} = PbB_{adult,0} + (PbS \times BKSF \times IRs \times AFs \times EFs)/AT$$

where:

PbB_{adult,central} = Central estimate of blood lead concentrations in a woman of child-bearing

age that has nonresidential exposures to site soils (µg/dL)

PbB_{adult,0} = Typical blood lead concentration in woman of child-bearing age not exposed

to site soils (µg/dL)

PbS = Soil lead concentration ($\mu g/g$)

BKSF = Biokinetic slope factor relating increase in typical adult blood lead

concentration to average daily lead uptake (µg/dL blood lead increase per

µg/day lead uptake)

IRs = Soil intake rate (g/day)

AFs = Gastrointestinal absorption fraction (unitless)

EFs = Exposure frequency (days/year)

AT = Averaging time (days)

The PbB_{adult,0} value used in this assessment was 1.0 μg/dL. This value was extracted from recent USEPA guidance that presented the results of an evaluation of data from the Third National Health and Nutrition Examination Survey (NHANES) collected between 1999 and 2004 (USEPA, 2009b).

The PbS parameter represents the lead concentration in soil at the fYNOP site. USEPA's ALM recommends the use of an average soil lead concentration for the PbS parameter. The soil lead

exposure point concentrations used in this assessment were the soil mean lead concentrations as discussed in Section 3 and presented on Table 5.

USEPA's recommended BKSF value of $0.4 \mu g/dL$ per $\mu g/day$ was used herein as the biokinetic slope factor (USEPA, 2003).

Soil intake rates (IRs) for lead exposures were receptor-specific and the same as the soil ingestion rates used to estimate exposures to other COPCs in soil as discussed in Section 4.2. For the maintenance worker scenario, the intake rate was 0.05 g/day; for the construction worker scenario, the intake rate was 0.33 g/day; and for the adolescent trespasser scenario, the intake rate was 0.1 g/day.

AFs represents the gastrointestinal absorption fraction of lead. USEPA's recommended value of 0.12, based on an absorption factor of soluble lead of 0.2 and a relative bioavailability of 0.6, was adopted in this assessment (USEPA, 2003).

Lastly, the AT for lead exposures is the total period during which soil contact may occur. For ongoing, long-term exposures such as those assessed in this report, the USEPA recommends a value of 365 days for the AT parameter (USEPA, 2003), and this value was adopted in this assessment.

Once the central tendency adult blood lead level was estimated using the equation above, the 95th percentile fetal blood lead concentration was calculated using the following equation (USEPA, 2003):

$$PbB_{fetal,0.95} = PbB_{adult,central} \times GSD_i^{1.645} \times R_{fetal/maternal}$$

where:

PbB_{adult,central} = Central estimate of blood lead concentrations in a woman of child-bearing

age that has nonresidential exposures to site soils (µg/dL)

GSD_i = Geometric standard deviation (unitless). (The exponent 1.645 is the value of

the standard normal deviate used to calculate the 95th percentile from a

lognormal distribution of blood lead concentration.)

R_{fetal/maternal} = Constant of proportionality between fetal blood lead concentration at birth

and maternal blood lead concentration (dimensionless)

The GSDi value of 1.8, as recommended in USEPA guidance (2009b) was used in this assessment.

The $R_{\text{fetal/maternal}}$ value relates the blood lead concentration of a mother to the blood lead concentration of a developing fetus. USEPA's recommended value of 0.9 was used in this assessment (USEPA, 2003).

The input parameters and equations used to determine lead exposures at the site are presented on Tables 24 through 27. These tables reflect the June 21, 2009 version of USEPA's worksheet for the calculation of blood lead concentrations. The results of the lead assessment are discussed in the Risk Characterization (Section 6.0).

5 TOXICITY ASSESSMENT

Toxicity assessment involves the evaluation of available toxicity information to be used in the risk assessment process. Toxicity values derived from dose-response relationships can be used to estimate the potential for the occurrence of adverse effects in individuals exposed to various constituent levels.

Adverse effects can be caused by acute exposure, which is a single or short-term exposure to a toxic substance, or by chronic exposure to lower levels on a continuous or repeated basis over an extended period of time. "Acceptable" acute or chronic levels of exposure to noncarcinogens are considered to be levels without any anticipated adverse effects. Such exposure levels are commonly expressed as reference doses (RfDs). RfDs were used to determine the potential for noncarcinogenic health effects resulting from dermal and oral exposures at the site. For inhalation exposures, reference concentrations (RfCs) were used to assess inhalation toxicity. RfCs are defined by the USEPA as an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious effects during a lifetime (USEPA, IRIS, 2012). An acceptable exposure level is calculated to provide an adequate margin of safety. RfDs and RfCs have been developed by the USEPA for exposure to constituents based on the most sensitive noncarcinogenic effects.

Carcinogenic risk refers to the probability of developing cancer as a result of exposure to known or suspected carcinogens. A cancer slope factor (CSF) is a plausible upper-bound estimate of the probability of an individual developing cancer as a result of a lifetime of exposure to a particular level of a potential carcinogen. CSFs were used to determine dermal and oral cancer risks at the site. For inhalation exposures, inhalation unit risk values (IURs) were used to assess risk. The USEPA defines an IUR as "the upper-bound excess lifetime cancer risk estimated to result from continuous exposure to an agent at a concentration of 1 µg/m³ in air" (USEPA, IRIS, 2012). IURs were used to determine inhalation cancer risks at the site.

Currently, the USEPA has not developed RfDs or CSFs to be utilized for the dermal exposure route. In the absence of published USEPA dermal RfDs and CSFs, oral RfDs and CSFs were adjusted for dermal absorption in accordance with the most current USEPA guidance (USEPA, 2004). Oral

RfDs were multiplied by a gastrointestinal (GI) absorption factor to convert administered doses to absorbed RfDs. Oral CSFs were divided by a GI absorption factor to estimate absorbed CSFs. GI absorption factors were obtained from USEPA's most recent RSL tables (November, 2011; USEPA, 2011b).

USEPA and PADEP have not provided current, published toxicity values for thallium or dimethylphthalate. In the absence of toxicity values for these COPCs, hazards and/or risks could not be calculated. The effect of the absence of toxicity values for these COPCs is discussed more in the Uncertainty Analysis (Section 7.0).

Chromium soil data from the site were presented in the site database as either "chromium" or "hexavalent chromium." It is likely that the data termed "chromium" represent total chromium results, a combination of both the trivalent and hexavalent forms. Toxicity values are not available for total chromium; toxicity values are available for trivalent chromium and hexavalent chromium. Accordingly, for this assessment, data termed "chromium" were assumed to be 100% hexavalent chromium for purposes of toxicity. This is a very conservative approach given that hexavalent chromium is more toxic than trivalent chromium. In addition, in the East Campus data set for soils from zero to 15 feet bgs, both chromium and hexavalent chromium were identified as COPCs. By assuming the chromium data are of the hexavalent form, exposures to hexavalent chromium are duplicated (i.e., exposures to hexavalent chromium were assessed using data for both chromium and hexavalent chromium). This highly conservative approach was employed to ensure adequate protection of human health.

Oral and inhalation toxicity values used in this assessment followed the PADEP (PADEP, 2011) and USEPA (2003) hierarchy of toxicity values. The toxicity values and GI absorption factors used in this assessment are presented on Table 28.

6 RISK CHARACTERIZATION

The objective of the risk characterization is to determine potential risk to receptors by combining the results of the exposure and toxicity assessments.

The potential for noncancer health effects was evaluated by comparing the site-specific exposure level with the RfD or RfC. This ratio of exposure to toxicity (intake/RfD or exposure concentration/RfC) is called the hazard quotient (HQ). To assess the overall potential for noncancer effects posed by multiple COPCs, a hazard index (HI) was derived by summing the individual HQs. If the site-specific exposure level exceeded the effects-based threshold (*i.e.*, the HI exceeded a value greater than 1.0), there may be concern for potential noncancer effects. A HI of 1.0 corresponds to the statutory limit established by Act 2 for potential noncancer effects under the site specific standard.

For the East Campus, the hazard index summed across the dermal, oral, and inhalation pathways for soil was 0.008 for the maintenance workers, 0.08 for the construction worker, and 0.0007 for the adolescent trespasser. For the West Campus, the hazard index summed across the dermal, oral, and inhalation pathways for soil was 0.11 for the maintenance workers, 0.86 for the construction worker, and 0.04 for the adolescent trespasser. Each of these hazard indices is below the Act 2 acceptable level of 1.0. Hazard indices for each scenario are summarized on Table 29.

The product of the lifetime daily intake and the CSF (or IUR for inhalation exposures) was used to estimate the upper bound excess cancer risk for each scenario. Act 2 establishes an acceptable risk range of 1×10^{-4} to 1×10^{-6} for exposure to carcinogens; this range represents an incremental increase of 1 in 10,000 to 1 in 1,000,000 in the chance of developing cancer over a lifetime. To demonstrate attainment with Act 2's Site-Specific Standard, cancer risk cannot exceed a level of 1×10^{-4} .

For the East Campus, the total cancer risk estimated for the maintenance worker was 3×10^{-8} , the total cancer risk calculated for the construction worker was 5×10^{-7} , and the total cancer risk estimated for the adolescent trespasser was 1×10^{-9} . For the West Campus, the total cancer risk estimated for the maintenance worker was 2×10^{-5} , the total cancer risk calculated for the construction worker was 2×10^{-6} , and the total cancer risk estimated for the adolescent trespasser was

 $9x10^{-6}$. Each of these cancer risk estimates were within or below Act 2's acceptable risk range of $1x10^{-4}$ to $1x10^{-6}$. Cancer risks for each scenario are summarized on Table 29.

Additionally, until the West Campus property is transferred, exposures of receptors to both East and West Campus soils may occur. As such, hazards and risks for each receptor were combined to assess potential exposures to the entire fYNOP property under current site conditions. Once again, hazards for each receptor evaluated herein were below Act 2's target benchmark of 1.0 for the combined exposures. Furthermore, the total cancer risk levels for each receptor were within Act 2's acceptable risk range for the combined exposures. The hazards and risks for the combined exposures are summarized on Table 29.

The results of the lead assessment yielded central tendency adult blood lead levels and 95^{th} percentile fetal blood lead levels below USEPA's blood lead concentration of concern of $10 \mu g/dL$. Tables 24 through 27 present the blood lead concentrations calculated for each scenario in which lead was screened in as a COPC.

Based on the human health risk assessment assumptions and methodologies used herein, COPCs detected in soil at the site at the concentrations identified in Section 3.0 meet the attainment requirements of the Chapter 250 Site-Specific Standard. Specifically, this risk assessment has demonstrated that "the risk level remaining at the site does not exceed a risk level of 1×10^{-4} and a hazard index of 1.0" as required in §250.702 (b)(3)(ii) of Chapter 250.

7 UNCERTAINTY ANALYSIS

Given the nature of risk assessment as a strongly model-based estimation of potential health hazards, a significant amount of uncertainty is inherent in the risk assessment process. Uncertainty in risk assessments commonly surrounds the likelihood, distribution, magnitude, and implications of risk. Sources of uncertainty include inherent randomness, imperfect or incomplete knowledge, and error. This section attempts to identify significant sources of uncertainty and how they may affect the outcome of the assessment. Uncertainty is present, to varying degrees, in each step of the risk assessment process, as described below.

7.1 Data Evaluation

Uncertainties in the data evaluation include analytical error and adequacy of sampling design, among others. Generally, the data evaluation contains far less uncertainty than other phases of the risk assessment.

Laboratory analysis of sampled media is typically very accurate relative to the other components of a risk assessment that are based on assumptions and professional judgment. Use of the appropriate analytical methods and data validation can reduce analytical uncertainty even more. The data used in this assessment were considered to accurately represent site environmental conditions. The sampling design focused on areas of known or suspected releases. As such, the associated data used in this evaluation likely represented potential worst-case conditions at the site and may have resulted in an overestimation of risks.

Surrogate reporting limits or detection limits were developed in the absence of reporting limits or detection limits for non-detect results for some analytes. Since the use of surrogate detection limits affected only some of the non-detect results, the overall effect on the risk assessment should be minimal. As a conservative measure, high-end detection limits were used thereby likely overestimating exposure point concentrations and associated hazards and risks.

Concentrations of detected constituents were screened to determine the COPCs to be carried through the quantitative risk assessment. As a result, several detected constituents were eliminated from the risk assessment process. The screening process was developed to identify those constituents that may present a large majority of the hazard or risk that may be present at the site.

However, the elimination of constituents from the risk assessment may result in a very slight underestimation of hazards and risks.

Sine it would be very difficult and/or cost prohibitive to determine the actual soil concentrations that a receptor may come into contact with at the site, an exposure-point concentration is used as a reasonable estimate of the concentration to which a population may be exposed over time. Since it is unlikely that a receptor would be consistently exposed to a maximum concentration located at a single point on a property, an average of the concentrations from across the area of property available to receptors is more appropriate. However, due to the high level of uncertainty associated with this assumption, the USEPA recommends the use of a 95% UCL for the exposure point concentration. The 95% UCL is a concentration that will exceed, with 95% confidence, the true average concentration. Accordingly, while the exposure-point concentration introduces a great deal of uncertainty into a risk assessment, the use of the 95% UCL is a conservative approach that likely overestimates hazards and risks.

7.2 Exposure Assessment

Assumptions made in this evaluation regarding the current property setting and land use were based on a firm knowledge of the Site gained from a variety of sources closely associated with the property. As such, the uncertainty surrounding current land use assumptions was minimal. The East Campus will more likely than not remain an industrial motorcycle manufacturing facility into the foreseeable future and uncertainty associated with the future use of the East Campus is minimal since an environmental covenant will be placed on the property limiting it to commercial/industrial uses. The future use of the West Campus remains undetermined although it will remain commercial or industrial based on environmental covenants to be adopted for the property. A revised risk assessment may be necessary if the future use of the property is inconsistent with the land-use and exposure assumptions described herein.

Limitations are inherent in the use of models to predict real-life conditions. The greater the appropriateness and accuracy of a model, the less uncertainty will be associated with its use. The use of any model however, no matter how accurate, introduces some level of uncertainty into an analysis. The various exposure models used herein are commonly accepted models that have been

extensively peer reviewed and considered appropriate for the application in which they were used in this assessment.

This risk assessment employed single-point estimates of exposure parameter values based on assumptions regarding the physical setting of the Site, the current land use, and the potential future land use. Probabilistic measures, which incorporate ranges of exposure values, were not used. The greater the potential range of values is for an exposure parameter, the greater the uncertainty associated with the use of a single value to represent that range. This assessment used PADEP or USEPA default parameter values when applicable. Such parameter values are typically conservative and may result in an overestimation of hazards/risks. The uncertainty associated with each parameter value is compounded when combined in an exposure model with other parameter values that are also associated with uncertainty.

Dermal exposures were not quantified for VOC and some inorganic COPCs because of a lack of data on the dermal absorption of these constituents. The inability to assess dermal exposures for some constituents may have resulted in a slight underestimation of dermal hazards and risks. It is very likely, however, that oral exposures to these constituents represent a more significant exposure route and hazards and risks associated with oral exposures would more likely than not drive the overall hazard and risk estimates for these COPCs.

USEPA's ALM was used to assess lead exposures to the adolescent trespasser. The age range of the adolescent trespasser (6 to 17 years old) is generally younger than that typically considered as adulthood or representative of a child-bearing age. Nevertheless, the ALM was employed in the absence of a more appropriate model to determine blood lead levels for exposures to non-residential adolescents. USEPA has published another lead exposure model, the Integrated Exposure Uptake Biokinetic (IEUBK) Model for Lead in Children, that estimates blood lead concentrations; however, the IEUBK model applies to residential children under the age of seven years; therefore, the child lead model was considered even less appropriate to use for an adolescent trespasser scenario.

7.3 Toxicity Assessment

A significant amount of uncertainty surrounds the development of the published toxicity values used herein. Toxicity values for humans are often developed based on the results of animal studies.

The relationships between these animal studies and their applicability to humans remain a source of debate. Sources of uncertainty in the development of toxicity values include extrapolating from animal studies to predict effects on humans, the use of dose-response information observed at high doses to predict effects that may occur at low doses, the use of data from short-term studies to anticipate effects of long-term exposures, and the applicability of information gained from studies of homogenous, healthy populations to predict potential adverse health effects on sensitive or compromised sub-populations. The USEPA typically applies uncertainty factors (generally a value of 10) as a conservative measure to account for these disconnects and to be protective of human health. Although these uncertainty factors may help to prevent the underestimation of risk, the uncertainty associated with the toxicity values still remains. The USEPA has indicated that the uncertainty surrounding RfD values can span up to one order of magnitude (USEPA, 2012).

Current, published USEPA or PADEP toxicity values were not available for two COPCs: thallium and dimethylphalate for the dermal, oral, and inhalation exposure pathways. As a result, noncarcinogenic hazards and carcinogenic risks could not be estimated for these COPCs. The exclusion of these COPCs from the overall hazard and risk calculations likely has resulted in an underestimation of hazards and risks at the site.

Thallium was a COPC in West Campus soils from 0-15 feet bgs. The thallium data set for West Campus surface and subsurface soils contained 360 results. Of these results, all but two results were either nondetect or below the MSC screening level of 14 mg/kg. Since 99% of the thallium results were either nondetect or below the MSC, it is not likely that thallium is a widespread constituent of concern that would pose significant risks at the property.

Dimethylphthalate was identified as a COPC in both West Campus surface soil and West Campus surface and subsurface soil data sets. There were no MSCs or RSLs to use as screening criteria; therefore, dimethylphthalate was automatically retained as a COPC. The West Campus soils 0-15 feet bgs data set included 265 results for dimethylphthalate. This substance was detected in only five (<2%) of these results. Four of the five detected results from the West Campus soils 0-15 feet bgs data set were surface soil samples and, therefore, were also included in the West Campus soils 0-2 feet bgs data set. Given the relatively few detections of this analyte, dimethylphthalate is not likely a widespread constituent of concern that would pose significant risks at the site.

Data termed "chromium" (i.e., total chromium representing both trivalent and hexavalent forms) from the site soil database were assumed to be hexavalent chromium for purposes of toxicity in the absence of further information. Since hexavalent chromium is more toxic than the trivalent form, the assumption that the total chromium results are of the hexavalent form is highly conservative. In reality, only a fraction of the total chromium values likely represent hexavalent chromium concentrations. Accordingly, the assumption that total chromium concentrations are 100% hexavalent chromium for purposes of toxicity likely resulted in a significant overestimation of hazards and risks.

7.4 Risk Characterization

Noncarcinogenic hazards and carcinogenic risks for each constituent were summed to develop overall hazard or risk estimates. This assumption of dose additivity ignores synergisms or antagonisms that may occur among chemical mixtures; therefore, hazards and risks may be underestimated or overestimated. Additionally, the summation of hazards and risks assumes similarities in the mechanisms of action of the chemicals, weighs compounds with different weights of evidence for carcinogenicity equally, and combines hazard quotients for substances with critical effects of varying toxicological significance. The USEPA recognizes these limitations (USEPA, 1989) but still requires that hazard and risk estimates for individual chemicals be added in an effort to prevent underestimation of the potential for adverse health effects. The questionable applicability of assuming dose additivity increases the uncertainty associated with the risk assessment.

Additionally, hazards and risks from the East and West Campus were combined to represent exposures to the entire fYNOP property under current site conditions (prior to the sale of the East Campus to the YCIDA). By combining hazards and risks from the two exposure units, exposure was essentially doubled (e.g., a construction worker was assumed to be present on the East Campus 60 days a year and on the West Campus 60 days a year, but when the scenarios were combined, the construction worker is present on-site a total of 120 days/year). This very conservative approach has likely overestimated site hazards and risks.

8 CONCLUSIONS

This human health risk assessment of soil exposures was performed for the fYNOP property located in York, Pennsylvania on behalf of Harley-Davidson. Harley-Davidson is seeking relief from liability for the site under Act 2 and the corresponding Chapter 250 regulations. This risk assessment was developed in accordance with the Site-Specific Standard option under Act 2 and the PADEP Land Recycling Program Chapter 250 regulations.

The fYNOP property has been subdivided, and the West Campus was sold and is being transferred to the YCIDA. Accordingly, for purposes of assessing exposure, the fYNOP property was divided into two exposure units – East Campus and West Campus. Both the East and West Campus will be subject to environmental covenants restricting land use to commercial and/or industrial purposes. Noncarcinogenic hazards and carcinogenic risks were evaluated for the East and West Campus independently to represent future site conditions. Hazards and risks from the East and West Campus were also combined to represent current site conditions.

A data screening process was employed, using both MSCs and RSLs, to identify COPCs in surface soils and in a combination of surface and subsurface soils in both campuses. The resulting COPCs were carried through the quantitative risk assessment process.

Detected concentrations of COPCs in soil in both the East and West Campus were also screened to determine if "hot spots" of impacted soils were present at the site. The first portion of the hot spot screening process, which employed screening levels of 100 times the USEPA RSLs, identified several hot spots. However, when screening levels of ten times the PADEP Direct Contact Non-Residential MSCs were used, the screening process did not reveal any hot spots on the property. Since the hot spots identified using 100 times the RSLs were not located in areas of the site that may be accessed by receptors at a higher rate than other areas, a separate risk evaluation of the hot spot areas was not necessary. Data from hot spots were incorporated into the exposure-point concentration calculations, therefore, the hazards and risks estimated in this assessment reflect exposures to the hot spots as well as other areas of the site.

Maintenance workers, construction workers, and adolescent trespassers were identified as potential receptors for both the East Campus and West Campus. Dermal, oral, and inhalation exposures to the identified COPCs were evaluated for each receptor.

The risk assessment determined that noncarcinogenic hazards for each receptor were below Act 2's acceptable benchmark of 1.0. This risk assessment also yielded potential carcinogenic risks that were within or below Act 2's acceptable risk range. Additionally, exposures to lead in soils were determined to be below acceptable levels. These results indicate that potential exposures to soil under current and hypothetical future land use conditions, as described in this report, are within Act 2-acceptable limits, even given the use of several very conservative assumptions and approaches. Accordingly, the site-specific standard has been attained for those COPCs in soils identified in this report.

Should future land use change from the currently assumed commercial/industrial use, if additional impacts to soil are discovered, or if existing engineering controls (e.g., parking lots, buildings) are breached or removed, a revised risk assessment and/or remediation may be necessary for the protection of human health.

9 REFERENCES

- Langan. Indoor Vapor Pathway Screening Assessment, Supplemental RI Workplan, Harley-Davidson Motor Company, York, Pennsylvania Facility. October 2003.
- Langan. Indoor Vapor Pathway Screening Assessment, Supplemental RI Report Harley-Davidson Motor Company, Operations, Inc., York, PA Facility. March 11, 2005
- Langan. Letter to Mr. Darius Ostrauskas, USEPA Region III. Vapor Intrusion Evaluation Response to EPA May 12, 2006 Comments on Langan's Letter of March 28, 2006. September 11, 2006.
- PADEP. Pennsylvania Environmental Quality Board Administration of the Land Recycling Program (Act 2). "Rules and Regulations, Title 25 Environmental Protection, Environmental Quality Board [25 PA Code Ch. 250]." <u>Pennsylvania Bulletin</u>, Vol. 31, No. 47, November 24, 2001 and updated January 8, 2011.
- Johnson, P.C., and R.A. Ettinger. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. Environmental Science and Technology, Vol. 25, No. 8: (1991): 1445-1452.
- SAIC (Science Applications International Corportion). Draft Conceptual Site Model for the Former York Naval Ordnance Plant. Harrisburg, PA. March, 2010.
- USEPA. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A). Interim Final. EPA/540/1-89/002. Office of Emergency and Remedial Response. Washington, DC, 1989.
- USEPA. Exposure Factors Handbook, Volume I: General Factors. EPA/600/P-95/002Fa. Office of Research and Development, Washington, DC, August 1997.
- USEPA. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004. Office of Solid Waste and Emergency Response. Washington, DC. November, 2002a.

- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response. OSWER 9355.4-24. Washington, DC. December 2002b.
- USEPA. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. Technical Review Workgroup for Lead. EPA-540-R-03-001. OSWER Dir #9285.7-54. Washington, DC. January, 2003.
- USEPA. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. Office of Superfund Remediation and Technology Innovation. EAP/540/R/99/005. Washington, DC. July 2004.
- USEPA. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposures to Carcinogens. Risk Assessmnt Forum. EPA/630/R-03/003F. Washington, DC. March 2005.
- USEPA. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) Final. Office of Superfund Remediation and Technology Innovation. EAP/540/R/070/002. Washington, DC. January 2009a.
- USEPA. Adult Lead Methodology Spreadsheet available at http://www.epa.gov/superfund/lead/products/ALM_2009.xls. Technical Review Workgroup for Lead. June 21, 2009 version.
- USEPA. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters. Office of Superfund Remediation and Technology Innovation. OSWER 9200.2-82. June 2009b.
- USEPA. ProUCL Version 4.1 Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. Office of Research and Development. EPA/600/R-07/041. May, 2010.

- USEPA. Exposure Factors Handbook. EPA/600/R-090/052F. Office of Research and Development, Washington, DC, September, 2011a.
- USEPA Regions 3, 6, and 9. Regional Screening Levels for Chemical Contaminants at Superfund Sites. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm. November, 2011b.
- USEPA. Integrated Risk Information System (IRIS). www.epa.gov/iris. March, 2012.

Table 1 Screening of Constituents in Surface Soil - East Campus Former York Naval Ordnance Plant, York, PA

	MSC Screening Level	Maximum Detected	Maximum Detected	Date	Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration
Analyte	mg/kg	mg/kg	Sample Location	Sampled	Level?	mg/kg	> RSL?
1,1,1,2-Tetrachloroethane	18	ND 50.0	NA NTT 0005	NA	No	NA	NI.
1,1,1-Trichloroethane	20	50.9	NTT-SG25a	12/21/1999	Yes	3800	No
1,1,2,2-Tetrachloroethane	0.43	ND	NA NA	NA	No	NA	
1,1,2-Trichloroethane	0.5	ND	NA NETT 44	NA	No	NA	
1,1-Dichloroethane	16	1.16	NETT-11	3/30/1987	No	NA	
1,1-Dichloroethene	0.7	0.05	NETT-10	3/30/1987	No	NA	
1,2,4-Trichlorobenzene	27	ND	NA	NA	No	NA	
1,2-Dibromo-3-Chloropropane	0.02	ND	NA	NA	No	NA	
1,2-Dibromoethane	0.005	ND	NA	NA	No	NA	
1,2-Dichlorobenzene	60	ND	NA	NA	No	NA	
1,2-Dichloroethane	0.5	ND	NA	NA	No	NA	
1,2-Dichloroethene	7	ND	NA	NA	No	NA	
1,2-Dichloropropane	0.5	ND	NA	NA	No	NA	
1,3-Dichlorobenzene	61	ND	NA	NA	No	NA	
1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
1,4-Dichlorobenzene	10	ND	NA	NA	No	NA	
1,4-Dioxane	3.2	ND	NA	NA	No	NA	
2,4,5-Trichlorophenol	6100	ND	NA	NA	No	NA	
2,4,6-Trichlorophenol	29	ND	NA	NA	No	NA	
2,4-Dichlorophenol	2	ND	NA	NA	No	NA	
2,4-Dimethylphenol	200	ND	NA	NA	No	NA	
2,4-Dinitrophenol	20	ND	NA	NA	No	NA	
2,4-Dinitrotoluene	0.84	ND	NA	NA	No	NA	
2,6-Dinitrotoluene	10	ND	NA	NA	No	NA	
2-Butanone	400	0.0365	HD Fire Pond A4 (0-1) Dup	6/16/2003	No	NA	
2-Chloroethyl Vinyl Ether	NA	ND	NA .	NA	No	NA	
2-Chloronaphthalene	18000	ND	NA	NA	No	NA	
2-Chlorophenol	4.4	ND	NA	NA	No	NA	
2-Hexanone	4.4	ND	NA	NA	No	NA	
2-Methylnaphthalene	1600	0.058	HD-FCSA-SB-001-02-0	5/9/2007	No	NA	
2-Methylphenol	510	ND	NA	NA	No	NA	
2-Nitroaniline	31	ND	NA	NA	No	NA	
2-Nitrophenol	82	ND	NA	NA	No	NA	
3,3'-Dichlorobenzidine	32	ND	NA	NA	No	NA	
3/4-Methylphenol	51	88	PSWS-1	3/22/2000	Yes	310	No
3-Nitroaniline	3.1	ND	NA NA	NA	No	NA	110
4.4'-DDD	120	ND	NA NA	NA NA	No	NA NA	
4,4'-DDE	170	ND	NA NA	NA NA	No	NA NA	
4,4'-DDT	230	ND	NA NA	NA NA	No	NA NA	
	1	ND	NA NA	NA	No	NA NA	
4,6-Dinitro-2-Methylphenol		ND ND		NA NA	No No		
4-Bromophenyl phenyl ether 4-Chloro-3-Methyl-Phenol	NA 110	ND ND	NA NA	NA NA	No No	NA NA	
,		ND ND		NA NA	No No	NA NA	
4-Chloroaniline	1.6		NA NA			NA NA	
4-Chlorodiphenyl Ether	NA 820	ND	NA NA	NA NA	No No	NA NA	
4-Methyl-2-Pentanone	820	ND	NA NA	NA	No No	NA	
4-Nitroaniline	13	ND	NA NA	NA	No	NA	
4-Nitrophenol	6	ND	NA NA	NA	No	NA	
Acenaphthene	4700	ND	NA NA	NA	No	NA	
Acenaphthylene	6900	ND	NA NA	NA	No	NA	
Acetone	9200	0.196	Fire Pond 1 (0-1)	6/13/2003	No	NA	
Acrolein	0.018	ND	NA	NA	No	NA	
Acrylonitrile	0.37	ND	NA	NA	No	NA	

Table 1 Screening of Constituents in Surface Soil - East Campus Former York Naval Ordnance Plant, York, PA

	MSC Screening Level	Maximum Detected	Maximum Detected	Date	Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration
Analyte	mg/kg	mg/kg	Sample Location	Sampled	Level?	mg/kg	> RSL?
Aldrin	1.8	ND	NA	NA	No	NA	
Alpha-BHC	0.19	ND	NA	NA	No	NA	
Alpha-Endosulfan	260	ND	NA	NA	No	NA	
Aluminum	190000	21900	BG-12	6/3/1998	No	NA	
Anthracene	350	ND	NA NA	NA	No	NA	
Antimony	27	3	HD Fire Pond A4 (0-1)	6/16/2003	No	NA NA	
Aroclor-1016	200	ND	NA	0/10/2003 NA	No	NA NA	
Aroclor-1221		ND	NA NA		No	NA NA	
	0.63			NA	-		
Aroclor-1232	0.5	ND	NA	NA	No	NA	
Aroclor-1242	16	ND	NA	NA	No	NA	
Aroclor-1248	40	ND	NA	NA	No	NA	
Aroclor-1254	40	5.5	SETT 10-1-01	10/1/2001	No	NA	
Aroclor-1260	40	0.0752	WP-SG7a	12/22/1999	No	NA	
Arsenic	29	18.1	PSWS-2	6/8/1998	No	NA	
Barium	8200	162	BG-11	6/3/1998	No	NA	
Benzene	0.5	0.018	SE Corner 11-15-01	11/15/2001	No	NA	
Benzo(a)anthracene	110	0.022	HD-B51-TP-2A-1.5/2-0	1/8/2009	No	NA	
Benzo(a)pyrene	11	ND	NA	NA	No	NA	
Benzo(b)fluoranthene	110	ND	NA	NA	No	NA	
Benzo(g,h,i)perylene	180	ND	NA NA	NA	No	NA	
Benzo(k)fluoranthene	610	ND	NA NA	NA NA	No	NA NA	
Beryllium	320	2.3	PSWS-2	6/8/1998	No	NA NA	
					-		
Beta-BHC	0.82	ND	NA	NA	No	NA	
Beta-Endosulfan	260	ND	NA	NA	No	NA	
Bis(2-Chloroethoxy) Methane	31	ND	NA	NA	No	NA	
Bis(2-Chloroethyl) Ether	0.076	ND	NA	NA	No	NA	
Bis(2-Chloroisopropyl) Ether	30	ND	NA	NA	No	NA	
Bis(2-ethylhexyl) phthalate	130	ND	NA	NA	No	NA	
Bromochloromethane	9	ND	NA	NA	No	NA	
Bromodichloromethane	8	ND	NA	NA	No	NA	
Bromoform	8	ND	NA	NA	No	NA	
Bromomethane	1	ND	NA	NA	No	NA	
Butylbenzylphthalate	10000	0.03	HD-B51-TP-2G-1.5/2-0	1/8/2009	No	NA	
Cadmium	38	5.3	PSWS-2	6/8/1998	No	NA	
Calcium*	NA	26400	PSWS-2	6/8/1998	No	NA	
Carbazole	83	ND	NA	NA	No	NA	
Carbon Disulfide	620	0.0156	HD Fire Pond A3 (0-1)	6/16/2003	No	NA	
Carbon Tetrachloride	0.5	0.0130 ND	NA	0/10/2003 NA	No	NA NA	
	49		NA NA	NA NA	-		
Chlordane		ND			No	NA	
Chlorobenzene	10	ND	NA	NA	No	NA	
Chlorodibromomethane	8	ND	NA	NA	No	NA	
Chloroethane	90	0.44	NETT-11	3/30/1987	No	NA	
Chloroform	8	0.0002	HD Fire Pond B4 (0-1)	6/16/2003	No	NA	
Chloromethane	3	ND	NA	NA	No	NA	
Chromium	190	139	HD-ELF-QC-DUP5-02-1	4/26/2007	No	NA	
Chrysene	230	ND	NA	NA	No	NA	
cis-1,2-Dichloroethene	7	0.53	HD-NETT-SB-042-02-0	4/4/2007	No	NA	
cis-1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
Cobalt	140	19.5	BG-12	6/3/1998	No	NA	
Copper	43000	173	HD-ELF-QC-DUP5-02-1	4/26/2007	No	NA	
Cyanide, Free	200	2.8	HD-NETT-SB-002-02-0	4/6/2007	No	NA NA	
Cyanide, Free Cyanide, Total	200	2.6	HD-NETT-SB-047-02-0	4/4/2007	No	NA NA	
Delta-BHC	NA	ND	NA	NA	No	NA	

Table 1 Screening of Constituents in Surface Soil - East Campus Former York Naval Ordnance Plant, York, PA

	MSC Screening Level	Maximum Detected	Maximum Detected	Date	Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration
Analyte	mg/kg	mg/kg	Sample Location	Sampled	Level?	mg/kg	> RSL?
Dibenzo(a,h)anthracene	11	ND	NA	NA 5/0/0007	No	NA	
Dibenzofuran	260	0.015	HD-FCSA-SB-001-02-0	5/9/2007	No	NA	
Dieldrin	0.44	ND	NA	NA	No	NA	
Diethylphthalate	8200	ND	NA	NA	No	NA	
Dimethylphthalate	NA 44.00	ND	NA NA	NA	No	NA	
Di-n-Butylphthalate	4100	ND	NA NTT 0005	NA	No	NA	
Di-n-octylphthalate	10000	0.498	NTT-SG25a	12/21/1999	No	NA	
Endosulfan Sulfate	70	ND	NA	NA	No	NA	
Endrin	5.5	ND	NA	NA	No	NA	
Endrin Aldehyde	NA	ND	NA NETT -	NA 0/20/4007	No	NA	
Ethylbenzene	70	0.8	NETT-7	3/30/1987	No	NA	
Fluoranthene	3200	0.028	HD-B51-TP-2A-1.5/2-0	1/8/2009	No	NA	
Fluorene	3800	ND	NA	NA	No	NA	
Heptachlor	0.68	ND	NA	NA	No	NA	
Heptachlor Epoxide	1.1	ND	NA	NA	No	NA	
Hexachlorobenzene	0.96	ND	NA	NA	No	NA	
Hexachlorobutadiene	39	ND	NA	NA	No	NA	
Hexachlorocyclopentadiene	91	ND	NA	NA	No	NA	
Hexachloroethane	0.56	ND	NA	NA	No	NA	
Hexavalent Chromium	190	1.59	NTT-SG12a	12/16/1999	No	NA	
Indeno(1,2,3-cd)pyrene	110	ND	NA	NA	No	NA	
Iron	190000	90200	PSWS-2	6/8/1998	No	NA	
Isophorone	10	ND	NA	NA	No	NA	
Lead	450	218	BG-12	6/3/1998	No	NA	
Lindane (Gamma-BHC)	0.072	ND	NA	NA	No	NA	
m,p-Xylene	1000	0.0017	HD Fire Pond A3 (0-1)	6/16/2003	No	NA	
Magnesium*	NA	10100	PSWS-2	6/8/1998	No	NA	
Manganese	2000	1600	PSWS-2	6/8/1998	No	NA	
Mercury	10	1.7	OWCA-SP-1	4/27/1995	No	NA	
Methyl tert-butyl ether	2	ND	NA	NA	No	NA	
Methylene chloride	0.5	0.024	HD-NETT-SB-013-02-0	4/19/2007	No	NA	
Naphthalene	25	0.034	HD-FCSA-SB-001-02-0	5/9/2007	No	NA	
Nickel	650	112	WP-SG7a	12/22/1999	No	NA	
Nitrobenzene	20	ND	NA	NA	No	NA	
N-Nitrosodi-n-propylamine	0.037	ND	NA	NA	No	NA	
N-Nitrosodiphenylamine	83	ND	NA	NA	No	NA	
o-Xylene	1000	0.0054	HD Fire Pond B2 (0-1)	6/16/2003	No	NA	
Pentachlorophenol	5	ND	NA	NA	No	NA	
Phenanthrene	10000	0.036	HD-B51-TP-2A-1.5/2-0	1/8/2009	No	NA	
Phenol	200	ND	NA	NA	No	NA NA	
Potassium*	NA	3650	PSWS-2	6/8/1998	No	NA	
Pyrene	2200	0.032	HD-B51-TP-2A-1.5/2-0	1/8/2009	No	NA	
Selenium	26	19	SE Corner 11-15-01	11/15/2003	No	NA NA	
Silver	84	0.5	HD Fire Pond B4 and A2	6/16/2003	No	NA NA	
Sodium*	NA	310	PSWS-1-B	6/8/1998	No	NA NA	
Styrene	24	0.018	HD-NETT-SB-043-02-0	4/4/2007	No	NA NA	
Tetrachloroethene	0.5	403	NTT-SG25a	12/21/1999	Yes	2.6	YES - COC
Thallium	14	0.56	HD-ELF-SB-002-02-0	4/25/2007	No	NA	120-000
Toluene	100	0.30	NETT-9	1/1/1987	No	NA NA	
Toxaphene	1.2	ND	NA NA	NA	No	NA NA	
trans-1,2-Dichloroethene	10	4.4	NETT-10	3/30/1987	No	NA NA	
trans-1,3-Dichloropropene	2.6	ND	NETT-10 NA	NA	No	NA NA	
Trichloroethene	0.5	0.8	NETT-8	3/30/1987	Yes	6.4	No
Trichlorofluoromethane		0.8 ND		3/30/1987 NA			INU
	200		NA PC 13		No No	NA NA	
Vanadium	20000	36.8	BG-12	6/3/1998	No	NA 4.7	ķ1.
Vinyl Chloride	0.2	1.5	NETT-10	3/30/1987	Yes	1.7	No
Xylenes (Total)	1000 12000	2.7 606	HD-NETT-SB-042-02-0 PSWS-2	4/4/2007 6/8/1998	No No	NA NA	
Zinc							

NA - Not Applicable ND - Not Detected * Essential Nutrient

Table 2 Screening of Constituents in Surface and Subsurface Soil - East Campus Former York Naval Ordnance Plant, York, PA

Analyte	MSC Screening Level mg/kg	Maximum Detected mg/kg	Maximum Detected Sample Location	Date Sampled	Is Maximum Concentration > MSC Screening Level?	US EPA Regional Screening Level mg/kg	Is Maximum Detected Concentration > RSL?
1,1,1,2-Tetrachloroethane	18	ND	NA	NA	No.	NA	> NOL :
1,1,1-Trichloroethane	20	50.9	NTT-SG25a	12/21/1999	Yes	3800	No
1,1,2,2-Tetrachloroethane	0.43	0.26	NPBA-OB-2 8-10	4/22/1988	No	NA	110
1,1,2-Trichloroethane	0.5	ND	NA	NA	No	NA	
1,1-Dichloroethane	16	1.16	NETT-11	3/30/1987	No	NA	
1.1-Dichloroethene	0.7	0.05	NETT-10	3/30/1987	No	NA	
1,2,4-Trichlorobenzene	27	0.015	HD-B51-TP-1G-9/9.5-0	12/30/2008	No	NA	
1,2-Dibromo-3-Chloropropane	0.02	ND	NA	NA	No	NA	
1,2-Dibromoethane	0.005	ND	NA	NA	No	NA	
1,2-Dichlorobenzene	60	ND	NA	NA	No	NA	
1,2-Dichloroethane	0.5	4.1	LFTP-14	11/14/1986	Yes	2.2	YES - COC
1,2-Dichloroethene	7	ND	NA	NA	No	NA	
1,2-Dichloropropane	0.5	ND	NA	NA	No	NA	
1,3-Dichlorobenzene	61	ND	NA	NA	No	NA	
1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
1,4-Dichlorobenzene	10	0.021	HD-DSA-QC-DUP7-04-1	5/7/2007	No	NA	
1,4-Dioxane	3.2	ND	NA	NA	No	NA	
2,4,5-Trichlorophenol	6100	ND	NA	NA	No	NA	
2,4,6-Trichlorophenol	29	ND	NA	NA	No	NA	
2,4-Dichlorophenol	2	ND	NA	NA	No	NA	
2,4-Dimethylphenol	200	ND	NA	NA	No	NA	
2,4-Dinitrophenol	20	ND	NA	NA	No	NA	
2,4-Dinitrotoluene	0.84	ND	NA	NA	No	NA	
2,6-Dinitrotoluene	10	ND	NA	NA	No	NA	
2-Butanone	400	0.46	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
2-Chloroethyl Vinyl Ether	NA	ND	NA	NA	No	NA	
2-Chloronaphthalene	18000	ND	NA	NA	No	NA	
2-Chlorophenol	4.4	ND	NA	NA	No	NA	
2-Hexanone	4.4	0.0772	NTT-SG15a Dup	12/17/1999	No	NA	
2-Methylnaphthalene	1600	0.2	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
2-Methylphenol	510	ND	NA	NA	No	NA	
2-Nitroaniline	31	ND	NA	NA	No	NA	
2-Nitrophenol	82	ND	NA	NA	No	NA	
3,3'-Dichlorobenzidine	32	ND	NA	NA	No	NA	
3/4-Methylphenol	51	88	PSWS-1	3/22/2000	Yes	310	No
3-Nitroaniline	3.1	ND	NA	NA	No	NA	
4,4'-DDD	120	ND	NA	NA	No	NA	
4,4'-DDE	170	ND	NA	NA	No	NA	
4,4'-DDT	330	ND	NA	NA	No	NA	
4,6-Dinitro-2-Methylphenol	1	ND	NA	NA	No	NA	
4-Bromophenyl phenyl ether	NA	0.092	HD-DSA-SB-002-04-0	5/7/2007	No	NA	
4-Chloro-3-Methyl-Phenol	110	ND	NA	NA	No	NA	
4-Chloroaniline	1.6	ND	NA	NA	No	NA	
4-Chlorodiphenyl Ether	NA	ND	NA	NA o (oo (ooo7	No	NA	
4-Methyl-2-Pentanone	820	0.4	HD-ELF-SB-009-09-0	6/22/2007	No	NA	
4-Nitroaniline	13	ND	NA	NA	No	NA	
4-Nitrophenol	6	ND	NA	NA 4/20/2027	No	NA	
Acenaphthene	4700	0.37	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Acenaphthylene	6900	ND	NA	NA 4/2/2007	No	NA	
Acetone	9200	0.49	HD-NETT-SB-038-04-0	4/3/2007	No	NA	
Acrolein	0.018	ND	NA SE Corner 11	NA	No	NA	
Acrylonitrile	0.37	0.0022		11/21/2001	No No	NA	
Aldrin	1.8	ND	NA NA	NA	No No	NA	
Alpha-BHC Alpha-Endosulfan	0.19 260	ND ND	NA NA	NA NA	No No	NA NA	
•							
Aluminum Anthracene	190000 350	21900 0.67	BG-12 HD-ELF-SB-008-03-0	6/3/1998 4/26/2007	No No	NA NA	
Antimony	350 27	37	HD-3: 2-4	9/11/1989	Yes	410	No
Aroclor-1016	200	ND	пD-3. 2-4 NA	9/11/1969 NA	No	NA	INU
Aroclor-1016 Aroclor-1221	200 0.63	ND ND	NA NA	NA NA	No No	NA NA	
Aroclor-1221 Aroclor-1232	0.63	ND ND	NA NA	NA NA	No No	NA NA	
Aroclor-1232 Aroclor-1242	0.5 16	ND ND	NA NA	NA NA	No No	NA NA	
Aroclor-1248	62	0.13	HD-ELF-SB-008-03-0	4/26/2007	No	NA NA	
Aroclor-1254	260	5.5	SETT 10-1-01	10/1/2001	No	NA NA	
Aroclor-1260	590 590	0.0752	WP-SG7a	12/22/1999	No	NA NA	
Arsenic	29	29.1	HD-ELF-SB-008-03-0	4/26/2007	Yes	1.6	YES - COC
7 11 007 110	8200	427	HD-ELF-SB-011-14-0	5/9/2007	No	NA	120-000

Table 2 Screening of Constituents in Surface and Subsurface Soil - East Campus Former York Naval Ordnance Plant, York, PA

	MSC Screening Level	Maximum Detected	Maximum Detected		Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration
Analyte	mg/kg	mg/kg	Sample Location	Date Sampled	Level?	mg/kg	> RSL?
Benzene	0.5	0.22	LFTP-14	11/14/1986	No	NA	
Benzo(a)anthracene	320	1.6	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Benzo(a)pyrene	46	2.6	HD-ELF-SB-006-14-0	4/26/2007	No	NA	
Benzo(b)fluoranthene	170	0.985	LF-SG13a	12/9/1999	No	NA	
Benzo(g,h,i)perylene	180	0.502	LF-SG13a	12/9/1999	No	NA	
Benzo(k)fluoranthene	610	0.49	LF-SG13a	12/9/1999	No	NA	
Beryllium	320	2.3	PSWS-2	6/8/1998	No	NA	
Beta-BHC	0.82	ND	NA NA	NA NA	No	NA	
Beta-Endosulfan	260	ND	NA NA	NA NA	No	NA	
Bis(2-Chloroethoxy) Methane	31 0.076	ND ND	NA NA	NA NA	No No	NA NA	
Bis(2-Chloroethyl) Ether	30	ND ND	NA NA	NA NA	No No	NA NA	
Bis(2-Chloroisopropyl) Ether	130	17	HD-ELF-SB-006-14-0	4/26/2007	No No	NA NA	
Bis(2-ethylhexyl) phthalate Bromochloromethane	9	ND	NA	4/26/2007 NA	No No	NA NA	
Bromodichloromethane	8	ND ND	NA NA	NA NA	No No	NA NA	
Bromoform	8	0.0011	SB-12-6	10/2/2002	No No		
Bromomethane	8 1	0.0011 ND	SB-12-6 NA	10/2/2002 NA	No No	NA NA	
Butylbenzylphthalate	10000	0.072	NA HD-B45-TP-1B-11/11.5-0	1/8/2009	No No	NA NA	
Cadmium	38	0.072 21.2	HD-B45-1P-1B-11/11.5-0 HD-ELF-SB-007-03-0	6/22/2007	No No	NA NA	
Calcium*	NA	26400	PSWS-2	6/8/1998	No No	NA NA	
Carbazole	NA 83	0.32	HD-ELF-SB-008-03-0	4/26/2007	No No	NA NA	
Carbon Disulfide	620	0.0156	HD Fire Pond A3 (0-1)	6/16/2003	No	NA NA	
Carbon Tetrachloride	0.5	ND	NA	NA	No	NA NA	
Chlordane	49	ND	NA NA	NA NA	No	NA NA	
Chlorobenzene	10	0.34	LFTP-14	11/14/1986	No	NA NA	
Chlorodibromomethane	8	ND	NA NA	NA	No	NA NA	
Chloroethane	90	0.44	NETT-11	3/30/1987	No	NA NA	
Chloroform	8	0.015	LFTP-14	11/14/1986	No	NA NA	
Chloromethane	3	ND	NA	NA	No	NA	
Chromium	190	507	HD-SPBA-SB-024-03-0	1/23/2008	Yes	5.6	YES - COC
Chrysene	230	1.8	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
cis-1,2-Dichloroethene	7	11	HD-NETT-SB-038-04-0	4/3/2007	Yes	200	No
cis-1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
Cobalt	140	19.5	BG-12	6/3/1998	No	NA	
Copper	43000	610	HD-ELF-SB-006-09-0	4/26/2007	No	NA	
Cyanide, Free	200	2.9	HD-NETT-SB-002-10-0	4/6/2007	No	NA	
Cyanide, Total	200	23	HD-NETT-SB-047-02-0	4/4/2007	No	NA	
Delta-BHC	NA	ND	NA	NA	No	NA	
Dibenzo(a,h)anthracene	160	0.058	HD-SPBA-SB-027-04-0	5/7/2007	No	NA	
Dibenzofuran	260	0.37	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Dieldrin	0.44	ND	NA	NA	No	NA	
Diethylphthalate	8200	0.06	HD-B51-TP-1C-9/9.5-0	12/30/2008	No	NA	
Dimethylphthalate	NA	ND	NA	NA	No	NA	
Di-n-Butylphthalate	4100	ND	NA	NA	No	NA	
Di-n-octylphthalate	10000	ND	NA	NA	No	NA	
Endosulfan Sulfate	70	ND	NA	NA	No	NA	
Endrin	5.5	ND	NA	NA	No	NA	
Endrin Aldehyde	NA	ND	NA	NA	No	NA	
Ethylbenzene	70	10	HD-NETT-SB-037-12-0	4/3/2007	No	NA	
Fluoranthene	3200	5.6	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Fluorene	3800	0.76	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Heptachlor	0.68	ND	NA	NA	No	NA	
Heptachlor Epoxide	1.1	ND	NA	NA	No	NA	
Hexachlorobenzene	0.96	ND	NA	NA	No	NA	
Hexachlorobutadiene	39	ND	NA	NA	No	NA	
Hexachlorocyclopentadiene	91	ND	NA	NA	No	NA	
Hexachloroethane	0.56	ND	NA	NA	No	NA	
Hexavalent Chromium	190	254	HD-SPBA-SB-024-03-0	1/23/2008	Yes	5.6	YES - COC
Indeno(1,2,3-cd)pyrene	28000	0.6	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Iron	190000	90200	PSWS-2	6/8/1998	No	NA	
Isophorone	10	ND	NA	NA	No	NA	
Lead	450	1580	HD-ELF-SB-006-14-0	4/26/2007	Yes	800	YES - COC
Lindane (Gamma-BHC)	0.072	ND	NA	NA	No	NA	
m,p-Xylene	1000	0.0017	HD Fire Pond A3 (0-1)	6/16/2003	No	NA	
Magnesium*	NA	10100	PSWS-2	6/8/1998	No	NA	
Manganese	2000	1600	PSWS-2	6/8/1998	No	NA	
Mercury	10	1.7	OWCA-SP-1	4/27/1995	No	NA	

Table 2 Screening of Constituents in Surface and Subsurface Soil - East Campus Former York Naval Ordnance Plant, York, PA

Analyte	MSC Screening Level mg/kg	Maximum Detected mg/kg	Maximum Detected Sample Location	Date Sampled	Is Maximum Concentration > MSC Screening Level?	US EPA Regional Screening Level mg/kg	Is Maximum Detected Concentration > RSL?
Methyl tert-butyl ether	2	ND	NA	NA	No	NA	
Methylene chloride	0.5	0.7	LFTP-14	11/14/1986	Yes	53	No
Naphthalene	25	0.49	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Nickel	650	454	HD-ELF-SB-010-03-0	6/22/2007	No	NA	
Nitrobenzene	20	ND	NA	NA	No	NA	
N-Nitrosodi-n-propylamine	0.037	ND	NA	NA	No	NA	
N-Nitrosodiphenylamine	83	ND	NA	NA	No	NA	
o-Xylene	1000	0.0054	HD Fire Pond B2 (0-1)	6/16/2003	No	NA	
Pentachlorophenol	5	ND	NA	NA	No	NA	
Phenanthrene	10000	3.9	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Phenol	200	0.072	HD-B45-TP-1A-10/5/11-0	1/8/2009	No	NA	
Potassium*	NA	3650	PSWS-2	6/8/1998	No	NA	
Pyrene	2200	2.6	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Selenium	26	19	SE Corner 11-15-01	11/15/2001	No	NA	
Silver	84	15.3	HD-ELF-SB-006-14-0	4/26/2007	No	NA	
Sodium*	NA	310	PSWS-1-B	6/8/1998	No	NA	
Styrene	24	0.018	HD-NETT-SB-043-02-0	4/4/2007	No	NA	
Tetrachloroethene	0.5	660	SB-13-6	10/2/2002	Yes	2.6	YES - COC
Thallium	14	20	HD-3: 2-4	9/11/1989	Yes	10	YES - COC
Toluene	100	16	HD-NETT-SB-037-12-0	4/3/2007	No	NA	
Toxaphene	1.2	ND	NA	NA	No	NA	
trans-1,2-Dichloroethene	10	4.4	NETT-10	3/30/1987	No	NA	
trans-1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
Trichloroethene	0.5	0.8	NETT-8	3/30/1987	Yes	6.4	No
Trichlorofluoromethane	200	0.00036	SB-14-4	10/2/2002	No	NA	
Vanadium	72000	44.3	HD-SPBA-SB-025-03-0	1/23/2008	No	NA	
Vinyl Chloride	0.2	2.5	HD-NETT-SB-037-12-1	4/4/2007	Yes	1.7	YES - COC
Xylenes (Total)	1000	86	HD-ELF-SB-008-03-0	4/26/2007	No	NA	
Zinc	12000	2400	HD-ELF-SB-006-14-0	4/26/2007	No	NA	

NA - Not Applicable ND - Not Detected

^{*} Essential Nutrient

Table 3 Screening of Constituents in Surface Soil - West Campust Former York Naval Ordnance Plant, York, PA

	MSC Screening Level	Maximum Detected	Maximum Detected		Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration >
Analyte	mg/kg	mg/kg	Sample Location	Date Sampled	Level?	mg/kg	RSL?
1,1,1,2-Tetrachloroethane	18	ND	NA	NA	No	NA	
1,1,1-Trichloroethane	20	0.26	OWCA-SP-7	4/26/1995	No	NA	
1,1,2,2-Tetrachloroethane	0.43	ND	NA	NA	No	NA	
1,1,2-Trichloroethane	0.5	ND	NA	NA	No	NA	
1,1-Dichloroethane	16	0.03	OWCA-SP-7	4/26/1995	No	NA	
1,1-Dichloroethene	0.7	ND	NA	NA	No	NA	
1,2,4-Trichlorobenzene	27	ND	NA	NA	No	NA	
1,2-Dibromoethane	0.005	ND	NA	NA	No	NA	
1,2-Dichlorobenzene	60	ND	NA	NA	No	NA	
1,2-Dichloroethane	0.5	ND	NA	NA	No	NA	
1,2-Dichloroethene	7	ND	NA	NA	No	NA	
1,2-Dichloropropane	0.5	ND	NA	NA	No	NA	
1,3-Dichlorobenzene	61	ND	NA	NA	No	NA	
1,3-Dichloropropene	2.6	ND	NA	NA	No	NA	
1,4-Dichlorobenzene	10	0.34	HD-BPA-SB-035-02-0	2/6/2004	No	NA	
1,4-Dioxane	3.2	ND	NA	NA	No	NA	
2,4,5-Trichlorophenol	6100	ND	NA	NA	No	NA	
2,4,6-Trichlorophenol	29	ND	NA	NA	No	NA	
2,4-Dichlorophenol	2	ND	NA	NA	No	NA	
2,4-Dimethylphenol	200	0.055	HD-B41S-SB-S7N-11	4/2/2008	No	NA	
2,4-Dinitrophenol	20	ND	NA	NA	No	NA	
2,4-Dinitrotoluene	0.84	ND	NA	NA	No	NA	
2,6-Dinitrotoluene	10	ND	NA	NA	No	NA	
2-Butanone	400	0.57	OWCA-SP-7	4/26/1995	No	NA	
2-Chloroethyl Vinyl Ether	NA	ND	NA	NA	No	NA	
2-Chloronaphthalene	18000	ND	NA	NA	No	NA	
2-Chlorophenol	4.4	ND	NA	NA	No	NA	
2-Hexanone	4.4	ND	NA	NA	No	NA	
2-Methylnaphthalene	1600	0.72	HD-WPL-SB-030-02-0	2/12/2004	No	NA	
2-Methylphenol	510	0.034	HD-B41S-SB-S7N-11	4/2/2008	No	NA	
2-Nitroaniline	31	ND	NA	NA	No	NA	
2-Nitrophenol	82	ND	NA	NA	No	NA	
3,3'-Dichlorobenzidine	32	ND	NA	NA	No	NA	
3/4-Methylphenol	51	0.39	HD-WPL-SB-120-02-0	4/19/2007	No	NA	
3-Nitroaniline	3.1	ND	NA	NA	No	NA	
4,6-Dinitro-2-Methylphenol	1	ND	NA	NA	No	NA	
4-Bromophenyl phenyl ether	NA	ND	NA	NA	No	NA	
4-Chloro-3-Methyl-Phenol	110	ND	NA	NA	No	NA	
4-Chloroaniline	1.6	0.097	HD-WPL-SB-106-01-0	4/23/2007	No	NA	
4-Chlorodiphenyl Ether	NA	ND	NA	NA	No	NA	
4-Methyl-2-Pentanone	820	ND	NA	NA	No	NA	
4-Methylphenol	51	0.23	HD-B-SS-2-02-00	7/30/2004	No	NA	
4-Nitroaniline	13	ND	NA	NA	No	NA	
4-Nitrophenol	6	ND	NA	NA	No	NA	
Acenaphthene	4700	2.5	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Acenaphthylene	6900	1	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Acetone	9200	0.26	HD-B-SS-2-02-00	7/30/2004	No	NA	
Acrolein	0.018	ND	NA	NA	No	NA	
Acrylonitrile	0.37	ND	NA	NA	No	NA	
Aluminum	190000	11300	BG-28	6/4/1998	No	NA	
Anthracene	350	3.8	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Antimony	27	7.6	HD-WPL-SB-115-01-0	4/12/2007	No	NA	
Aroclor-1016	200	ND	NA	NA	No	NA	
Aroclor-1221	0.63	ND	NA	NA	No	NA	
Aroclor-1232	0.5	ND	NA	NA	No	NA	
Aroclor-1242	16	ND	NA	NA	No	NA	
Aroclor-1248	40	0.078	HD-WPL-SB-118-02-0	4/30/2007	No	NA	
Aroclor-1254	40	14	WPLTP-11-4	7/23/1991	No	NA	
Aroclor-1260	40	6.3	HD-WPL-SB-017-02-0	2/13/2004	No	NA	
Aroclor-1268	0.5	ND	NA	NA	No	NA	
Arsenic	29	29	SB 522	5/1/2000	Yes	1.6	YES - COC
Barium	8200	347	HD-WPL-SB-120-02-0	4/19/2007	No	NA	
Benzene	0.5	0.002	HD-WPL-SB-024-02-0	2/13/2004	No	NA	
Benzo(a)anthracene	110	9.4	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Benzo(a)pyrene	11	9.3	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Benzo(b)fluoranthene	110	7.3	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Benzo(g,h,i)perylene	180	5.3	HD-WPL-SB-115-01-0	4/12/2007	No	NA	
Benzo(k)fluoranthene	610	9.3	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Beryllium	320	2.5	HD-B41S-SB-S7N-14	4/2/2008	No	NA	
Bis(2-Chloroethoxy) Methane	31	ND	NA	NA	No	NA	
Bis(2-Chloroethyl) Ether	0.076	ND	NA	NA	No	NA	

Table 3 Screening of Constituents in Surface Soil - West Campust Former York Naval Ordnance Plant, York, PA

Accelera	MSC Screening Level	Maximum Detected	Maximum Detected	Data O	Is Maximum Concentration > MSC Screening	US EPA Regional Screening Level	Is Maximum Detected Concentration
Analyte Bis(2-Chloroisopropyl) Ether	mg/kg 30	mg/kg ND	Sample Location NA	Date Sampled NA	Level? No	mg/kg NA	RSL?
Bis(2-ethylhexyl) phthalate	130	2.3	HD-B41S-SB-S7N-11	4/2/2008	No	NA NA	
Bromochloromethane	9	ND	NA	4/2/2008 NA	No	NA NA	
Bromodichloromethane	8	ND	NA NA	NA NA	No	NA NA	
Bromoform	8	ND	NA	NA	No	NA NA	
Bromomethane	1	ND	NA	NA	No	NA NA	
Butylbenzylphthalate	10000	0.087	HD-B41S-SB-S7N-11	4/2/2008	No	NA NA	
Cadmium	38	112	UTSWS-3	6/9/1998	Yes	80	YES - COC
Calcium*	NA	3910	BG-27	6/4/1998	No	NA	
Carbazole	83	0.61	HD-WPL-SB-115-01-0	4/12/2007	No	NA	
Carbon Disulfide	620	0.0072	HD-B41S-SB-012-02-0	2/8/2008	No	NA	
Carbon Tetrachloride	0.5	ND	NA	NA	No	NA	
Chlorobenzene	10	ND	NA	NA	No	NA	
Chlorodibromomethane	8	ND	NA	NA	No	NA	
Chloroethane	90	ND	NA	NA	No	NA	
Chloroform	8	0.0039	HD-WPL-SB-120-02-0	4/19/2007	No	NA	
Chloromethane	3	ND	NA	NA	No	NA	
Chromium	190	3820	HD-WPL-SB-024-02-0	2/13/2004	Yes	5.6	YES - COC
Chrysene	230	8.6	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
cis-1,2-Dichloroethene	7	5.1	HD-B41S-SB-S7N-16	4/2/2008	No	NA	
cis-1,3-Dichloropropene	2.6	ND	NA NA	NA	No	NA	
Cobalt	140	6.52	BG-28	6/4/1998	No	NA	
Copper	43000	2700	WPLTP-11-4	7/23/1991	No	NA NA	
Cyanide, Free	200	1	HD-B41S-SB-009-02-0	2/8/2008	No	NA NA	
Cyanide, Total	200	0.69	HD-WPL-SD-0055-0	7/5/2007	No	NA NA	
Dibenzo(a,h)anthracene	11	2.4	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Dibenzofuran	260	1.5	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Diethylphthalate	8200	0.041	HD-B41S-SB-012-02-0	2/8/2008	No	NA	
Dimethylphthalate	NA NA	0.066	HD-FCSA-SB-003-02-0	5/7/2007	No	NA NA	YES - COC
Di-n-Butylphthalate	4100	1.1	HD-WPL-SB-040-02-0	2/13/2004	No	NA	
Di-n-octylphthalate	10000	0.042	HD-B41S-SB-S7N-11	4/2/2008	No	NA	
Ethylbenzene	70	15	OWCA-SP-7	4/26/1995	No	NA	
Fluoranthene	3200	18	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Fluorene	3800	2.9	HD-WPL-SB-023-02-0	2/12/2004	No	NA	
Hexachlorobenzene	0.96	ND	NA	NA	No	NA	
Hexachlorobutadiene	39	ND	NA	NA	No	NA	
Hexachlorocyclopentadiene	91	ND	NA	NA	No	NA	
Hexachloroethane	0.56	ND	NA	NA	No	NA	
Hexavalent Chromium	190	122	HD-B41S-SB-010-02-0	2/8/2008	No	NA	
Indeno(1,2,3-cd)pyrene	110	5.6	HD-WPL-SB-023-02-0	2/12/2004	No	NA NA	
Iron	190000	15800	BG-27	6/4/1998	No	NA	
Isophorone	10	0.16	HD-WPL-SB-074-02-0	3/12/2004	No	NA	
Lead	450	1000	WPL-15-B-1	7/23/1991	Yes	800	YES - COC
Magnesium*	NA	1280	BG-28	6/4/1998	No	NA	
Manganese	2000	327	BG-28	6/4/1998	No	NA	
Mercury	10	6	HD-WPL-SB-030-02-0	2/12/2004	No	NA	
Methyl tert-butyl ether	2	ND	NA	NA	No	NA	
Methylene chloride	0.5	0.1	HD-B41S-SB-S7N-11	4/2/2008	No	NA NA	
Naphthalene	25	0.91	HD-WPL-SB-030-02-0	2/12/2004	No	NA NA	
Nickel	650	360	WPLTP-11-4	7/23/1991	No	2000	No
Nitrobenzene	20	0.88	HD-WPL-SB-106-01-0	4/23/2007	No	NA NA	
N-Nitrosodi-n-propylamine	0.037	ND	NA NA	NA	No	NA	
N-Nitrosodiphenylamine	83	ND	NA	NA	No	NA	
Pentachlorophenol	5	4.2	HD-WPL-SB-120-02-0	4/19/2007	No	NA	
Phenanthrene	10000	9.5	HD-WPL-SB-115-01-0	4/12/2007	No	NA	
Phenol	200	ND	NA NA	NA	No	NA	
Potassium*	NA NA	2810	BG-28	6/4/1998	No	NA NA	
Pyrene	2200	16	HD-WPL-SB-023-02-0	2/12/2004	No	NA NA	
Selenium	26	1.5	HD-WPL-SB-046-02-0	2/12/2004	No	NA	
Silver	84	42	WPLTP-11-4	7/23/1991	No	NA NA	
Sodium*	NA	ND	NA	NA	No	NA	
Styrene	24	ND	NA	NA	No	NA NA	
Tetrachloroethene	0.5	8.1	HD-B41S-SB-S7N-11	4/2/2008	Yes	2.6	YES - COC
Thallium	14	22	SB 522	5/1/2000	Yes	10	YES - COC
Toluene	100	23	OWCA-SP-7	4/26/1995	No	NA NA	
rans-1,2-Dichloroethene	10	0.0035	HD-B41S-SB-010-02-0	2/8/2008	No	NA NA	
rans-1,3-Dichloropropene	2.6	ND	NA	NA	No	NA NA	
Trichloroethene	0.5	7.8	HD-BPA-SB-054-01-0	3/13/2004	Yes	6.4	YES - COC
Trichlorofluoromethane	200	ND	NA	NA	No	NA	120-000
Vanadium	20000	50.2	HD-WPL-SB-120-02-0	4/19/2007	No	NA NA	
Vanadium Vinyl Chloride	0.2	0.088	HD-B41S-SB-S4N-06	4/2/2007	No	NA NA	
•	1000	100	OWCA-SP-7	4/26/1995	No	NA NA	
Xylenes (Total) Zinc							
/ II II .	12000	6900	HD-WPL-SB-024-02-0	2/13/2004	No	NA	

NA - Not Applicable

Table 3 Screening of Constituents in Surface Soil - West Campust Former York Naval Ordnance Plant, York, PA

MSC Is Max Screening Maximum Concent	ximum Is Maximum
Screening Maximum Concern	
	ntration > US EPA Regional Detected
Level Detected Maximum Detected MSC Sc	creening Screening Level Concentration >
Analyte mg/kg mg/kg Sample Location Date Sampled Lev	vel? mg/kg RSL?

ND - Not Detected
* Essential Nutrient

Table 4 Screening of Constituents in Surface and Subsurface Soil - West Campus Former York Naval Ordnance Plant, York, PA

	MSC				Is Maximum	US EPA Regional	Is Maximum
	Screening	Maximum			Concentration >	Screening	Detected
	Level	Detected	Maximum Detected		MSC Screening	Level	Concentration
Analyte	mg/kg	mg/kg	Sample Location	Date Sampled	Level?	mg/kg	> RSL?
1,1,1,2-Tetrachloroethane	18	ND	NA NA	NA NA	No	NA	, .
1.1.1-Trichloroethane	20	170	HD-B4ND-SB-014-15-0	7/23/2007	Yes	3800	No
1,1,2,2-Tetrachloroethane	0.43	ND	NA	NA	No	NA	
1,1,2-Trichloroethane	0.5	0.54	HD-WPL-SB-055-07-0	3/10/2004	Yes	5.3	No
1,1-Dichloroethane	16	1	HD-B4ND-SB-014-15-0	7/23/2007	No	NA	
1,1-Dichloroethene	0.7	0.11	OWCA-CB-9	4/27/1988	No	NA	
1,2,4-Trichlorobenzene	27	ND	NA	NA	No	NA	
1,2-Dibromo-3-Chloropropane	0.02	ND	NA	NA	No	NA	
1,2-Dibromoethane	0.005	ND	NA	NA	No	NA	
1,2-Dichlorobenzene	60	0.21	HD-WPL-SB-069-07-0	3/11/2004	No	NA	
1,2-Dichloroethane	0.5	ND	NA	NA	No	NA	
1,2-Dichloroethene	7	ND	NA	NA	No	NA	
1,2-Dichloropropane	0.5	ND	NA	NA	No	NA	
1,3-Dichlorobenzene	61	ND	NA	NA	No	NA	
1,3-Dichloropropene	2.6	ND	NA NA	NA NA	No	NA NA	
1,4-Dichlorobenzene	10	0.34	HD-BPA-SB-035-02-0	2/6/2004	No	NA NA	
1,4-Dioxane	3.2	ND	NA	NA	No	NA NA	
2,4,5-Trichlorophenol	6100	ND	NA NA	NA NA	No	NA NA	
2,4,6-Trichlorophenol	29	ND	NA NA	NA	No	NA	
2,4-Dichlorophenol	2	ND	NA NA	NA NA	No	NA NA	
2,4-Dimethylphenol	200	0.055	HD-B41S-SB-S7N-11	4/2/2008	No	NA NA	
2,4-Dinitrophenol	20	ND	NA	4/2/2000 NA	No	NA NA	
2,4-Dinitrophenol	0.84	ND	NA NA	NA NA	No	NA NA	
2.6-Dinitrotoluene	10	1.53	BPA TP-1a	12/7/1999	No	NA NA	
2-Butanone	400	5.2	OWCA-SP-3	4/28/1995	No	NA NA	
2-Chloroethyl Vinyl Ether	NA	ND	NA	4/20/1993 NA	No	NA NA	
2-Chloronaphthalene	18000	ND	NA NA	NA NA	No	NA NA	
2-Chlorophenol	4.4	ND	NA NA	NA NA	No	NA NA	
2-Hexanone	4.4	ND	NA NA	NA NA	No	NA NA	
2-Methylnaphthalene	1600	6.6	HD-WPL-SB-095-05-0	4/26/2007	No	NA NA	
2-Methylphenol	510	0.085	HD-B41N-TP-1G-4/4.5-0	12/23/2008	No	NA NA	
2-Nitroaniline	31	ND	NA	NA	No	NA NA	
2-Nitrophenol	82	ND	NA NA	NA NA	No	NA NA	
3,3'-Dichlorobenzidine	32	ND	NA NA	NA NA	No	NA NA	
3/4-Methylphenol	51	0.39	HD-WPL-SB-120-02-0	4/19/2007	No	NA	
* *	3.1	ND	NA	4/19/2007 NA	No		
3-Nitroaniline 4,4'-DDD	3.1 120	ND ND	NA NA	NA NA	No	NA NA	
4,4'-DDE	120	ND ND	NA NA	NA NA	No	NA NA	
	330		NA NA		No		
4,4'-DDT	330	ND ND	NA NA	NA NA	No No	NA NA	
4,6-Dinitro-2-Methylphenol	NA	ND ND	NA NA	NA NA	No No	NA NA	
4-Bromophenyl phenyl ether 4-Chloro-3-Methyl-Phenol	110	ND ND	NA NA	NA NA	No No	NA NA	
4-Chloroaniline	1.6	ND ND	NA NA	NA NA	No	NA NA	
4-Chlorodiphenyl Ether 4-Methyl-2-Pentanone	NA 820	ND 0.43	NA OWCA-SP-7	NA 4/26/1995	No No	NA NA	
4-Methylphenol	620 51	0.43	HD-B-SS-2-02-00	7/30/2004	No	NA NA	
4-Nitroaniline	13	0.23 ND	пр-6-55-2-02-00 NA	7/30/2004 NA	No	NA NA	
4-Nitrophenol	6	ND ND	NA NA	NA NA	No	NA NA	
Acenaphthene	4700	ND 8.2	WPL TP-5	11/26/1999	No No	NA NA	
Acenaphthylene	6900	6.2 2.6	WPL TP-5	11/26/1999	No	NA NA	
Acetone	9200	2.6 3	OWCA-SP-7	4/26/1995			
					No No	NA NA	
Acrolein	0.018	ND	NA NA	NA NA	No No	NA NA	
Acrylonitrile	0.37	ND	NA NA	NA NA	No No	NA NA	
Aldrin	1.8	ND	NA NA	NA NA	No No	NA	
Alpha-BHC	0.19	ND	NA NA	NA NA	No No	NA	
Alpha-Endosulfan	260	ND	NA BG-28	NA 6/4/1008	No No	NA	
Aluminum	190000	11300		6/4/1998	No No	NA	
Anthracene	350	13	WPL TP-5	11/26/1999	No	NA	

Table 4 Screening of Constituents in Surface and Subsurface Soil - West Campus Former York Naval Ordnance Plant, York, PA

Analyte	MSC Screening Level mg/kg	Maximum Detected mg/kg	Maximum Detected Sample Location	Date Sampled	Is Maximum Concentration > MSC Screening Level?	US EPA Regional Screening Level mg/kg	Is Maximum Detected Concentration > RSL?
Antimony	27	122	WPL-SG-33a	12/29/1999	Yes	41	YES - COC
Aroclor-1016	200	ND	NA	NA	No	NA	
Aroclor-1221	0.63	ND	NA	NA	No	NA	
Aroclor-1232	0.5	ND	NA	NA	No	NA	
Aroclor-1242	16	0.04	HD-BPA-SB-024-04-0	2/5/2004	No	NA	
Aroclor-1248	62	0.078	HD-WPL-SB-118-02-0	4/30/2007	No	NA	
Aroclor-1254	260	270	HD-WPL-SB-095-05-0	4/26/2007	Yes	0.74	YES - COC
Aroclor-1260	590	6.3	HD-WPL-SB-017-02-0	2/13/2004	No	NA	
Aroclor-1268	0.5	ND	NA	NA	No	NA	
Arsenic	29	221	WPL-SG-33a	12/29/1999	Yes	1.6	YES - COC
Barium	8200	370	HD-WPL-SB-095-05-0	4/26/2007	No	NA	
Benzene	0.5	0.0728	WPL TP-5	11/26/1999	No	NA	
Benzo(a)anthracene	320	54	WPL TP-5	11/26/1999	No	NA	
Benzo(a)pyrene	46	74	WPL TP-5	11/26/1999	Yes	0.21	YES - COC
Benzo(b)fluoranthene	170	95	WPL TP-5	11/26/1999	No	NA	
Benzo(g,h,i)perylene	180	43	WPL TP-5	11/26/1999	No	NA	
Benzo(k)fluoranthene	610	27.2	BPA TP-1a	12/7/1999	No	NA	
Beryllium	320	225	WPL-SG-33a	12/29/1999	No	NA	
Beta-BHC	0.82	ND	NA	NA	No	NA	
Beta-Endosulfan	260	ND	NA	NA	No	NA	
Bis(2-Chloroethoxy) Methane	31	ND	NA	NA	No	NA	
Bis(2-Chloroethyl) Ether	0.076	ND	NA	NA	No	NA	
Bis(2-Chloroisopropyl) Ether	30	ND	NA	NA	No	NA	
Bis(2-ethylhexyl) phthalate	130	8.4	WPL TP-3 HD-WPL-SB-017-04-0	11/26/1999 2/13/2004	No	NA	
Bromochloromethane	9	0.0004	'HD-WPL-SB-036-04-0	2/17/2004	No	NA	
Bromodichloromethane	8	0.027	TANK 3 NW 7.5	11/7/2000	No	NA	
Bromoform	8	ND	NA	NA	No	NA	
Bromomethane	1	ND	NA	NA	No	NA	
Butylbenzylphthalate	10000	0.2	HD-B41S-SB-007-03-0	2/7/2008	No	NA	
Cadmium	38	224	WPL-SG-33a	12/29/1999	Yes	80	YES - COC
Calcium*	NA	3910	BG-27	6/4/1998	No	NA	
Carbazole	83	9.6	WPL TP-5	11/26/1999	No	NA	
Carbon Disulfide	620	0.0072	HD-B41S-SB-012-02-0	2/8/2008	No	NA	
Carbon Tetrachloride	0.5	ND	NA	NA	No	NA	
Chlordane	49	ND	NA	NA	No	NA	
Chlorobenzene	10	1.2	HD-WPL-SB-023-12-0	2/12/2004	No	NA	
Chlorodibromomethane	8	ND	NA	NA	No	NA	
Chloroethane	90	ND	NA	NA	No	NA	
Chloroform	8	0.0061	SB-14-14	10/19/2000	No	NA	
Chloromethane	3	ND	NA	NA	No	NA	
Chromium	190	8200	WPL-15-B-3	7/23/1991	Yes	5.6	YES - COC
Chrysene	230	54	WPL TP-5	11/26/1999	No	NA	
cis-1,2-Dichloroethene	7	40	HD-WPL-SB-055-07-0	3/10/2004	Yes	200	No
cis-1,3-Dichloropropene	2.6	0.0088	SB-14-14	10/19/2000	No	NA	
Cobalt	140	6.52	BG-28	6/4/1998	No	NA	
Copper	43000	3500	HD-WPL-TP-037-05-0	2/27/2004	No	NA	
Cyanide, Free	200	12.6	HD-B41N-TP-1D-2.5/3-0	12/23/2008	No	NA	
Cyanide, Total	200	174	HD-B41N-TP-1J-4/4.5-0	2/4/2009	No	NA	
Delta-BHC	NA	ND	NA	NA	No	NA	
Dibenzo(a,h)anthracene	160	15	WPL TP-5	11/26/1999	No	NA	
Dibenzofuran	260	4.4	WPL TP-5	11/26/1999	No	NA	
Dieldrin	0.44	ND	NA	NA	No	NA	
Diethylphthalate	8200	0.37	HD-B41N-TP-1G-4/4.5-1	12/23/2008	No	NA	
Dimethylphthalate	NA	0.066	HD-FCSA-SB-003-02-0	5/7/2007	No	NA	YES - COC
Di-n-Butylphthalate	4100	1.1	HD-WPL-SB-040-02-0	2/13/2004	No	NA	
Di-n-octylphthalate	10000	0.042	HD-B41S-SB-S7N-11	4/2/2008	No	NA	
Endosulfan Sulfate	70	ND	NA	NA	No	NA	
Endrin	5.5	ND	NA	NA	No	NA	
Endrin Aldehyde	NA	ND	NA	NA	No	NA	
Ethylbenzene	70	27	OWCA-SP-5	4/27/1995	No	NA	

Table 4 Screening of Constituents in Surface and Subsurface Soil - West Campus Former York Naval Ordnance Plant, York, PA

Analyte	MSC Screening Level mg/kg	Maximum Detected mg/kg	Maximum Detected Sample Location	Date Sampled	Is Maximum Concentration > MSC Screening Level?	US EPA Regional Screening Level mg/kg	Is Maximum Detected Concentration > RSL?
Fluoranthene	3200	110	WPL TP-5	11/26/1999	No	NA NA	
Fluorene	3800	12	WPL TP-5	11/26/1999	No	NA	
Heptachlor	0.68	ND	NA	NA	No	NA	
Heptachlor Epoxide	1.1	ND	NA	NA	No	NA	
Hexachlorobenzene	0.96	4.36	BPA TP-1a	12/7/1999	Yes	1.1	YES - COC
Hexachlorobutadiene	39	ND	NA	NA	No	NA	
Hexachlorocyclopentadiene	91	ND	NA	NA	No	NA	
Hexachloroethane	0.56	ND	NA	NA	No	NA	
Hexavalent Chromium	190	122	HD-B41S-SB-010-02-0	2/8/2008	No	NA	
Indeno(1,2,3-cd)pyrene	28000	43	WPL TP-5	11/26/1999	No	NA	
Iron	190000	15800	BG-27	6/4/1998	No	NA	
Isophorone	10	0.16	HD-WPL-SB-074-02-0	3/12/2004	No	NA NA	
Lead	450	2760	HD-WPL-TP-037-05-0	2/27/2004	Yes	800	YES - COC
Lindane (Gamma-BHC)	0.072	ND	NA NA	NA	No	NA	120 000
m,p-Xylene	1000	ND	NA NA	NA NA	No	NA NA	
Magnesium*	NA	1280	BG-28	6/4/1998	No	NA	
Manganese	2000	327	BG-28	6/4/1998	No	NA	
Mercury	10	6	HD-WPL-SB-030-02-0	2/12/2004	No	NA NA	
Methyl tert-butyl ether	2	ND	NA	NA	No	NA NA	
Methylene chloride	0.5	0.1	HD-B41S-SB-S7N-11	4/2/2008	No	NA NA	
Naphthalene	25	11	HD-WPL-TP-037-05-0	2/27/2004	No	NA NA	
Nickel	650	1500	BLD2-Tank 6 N	1/1/2000	Yes	2000	No
Nitrobenzene	20	0.88	HD-WPL-SB-106-01-0	4/23/2007	No	NA	INO
N-Nitrosodi-n-propylamine	0.037	0.075	HD-B41S-SB-007-03-0	2/7/2008	Yes	0.25	No
N-Nitrosodiphenylamine	83	0.073 ND	NA	NA	No	NA	INO
o-Xylene	1000	ND	NA NA	NA NA	No	NA NA	
Pentachlorophenol	5	4.2	HD-WPL-SB-120-02-0	4/19/2007	No	NA NA	
Phenanthrene	10000	61	WPL TP-5	11/26/1999	No	NA NA	
Phenol	200	0.41	HD-WPL-SB-061-06-0	3/11/2004	No	NA NA	
Potassium*	NA	2810	BG-28	6/4/1998	No	NA NA	
Pyrene	2200	120	WPL TP-5	11/26/1999	No No	NA NA	
Selenium	2200	194	WPL-SG-33a	12/29/1999	Yes	510	No
Silver	26 84	225	WPL-SG-33a WPL-SG-33a	12/29/1999	Yes	510 510	No No
	NA	ND		12/29/1999 NA	res No	NA	INO
Sodium*	NA 24		NA OWCA SD 5		No		
Styrene		0.027	OWCA-SP-5	4/27/1995	-	NA	YES - COC
Tetrachloroethene	0.5	1400	HD-B4ND-SB-014-15-0	7/23/2007	Yes	2.6 1	
Thallium Toluono	14 100	212 131.25	WPL-SG-33a	12/29/1999	Yes Yes	4500	YES - COC
Toluene	100 1.2	131.25 ND	WPL-15-B-3 NA	7/23/1991 NA	y es No	4500 NA	No
Toxaphene							
trans-1,2-Dichloroethene	10	0.275	OWCA-CB-9	4/27/1988	No No	NA NA	
trans-1,3-Dichloropropene	2.6	0.0096	SB-14-14	10/19/2000	No	NA 6.4	VEC COC
Trichloroethene Trichloroethene	0.5	460	HD-B4ND-SB-014-15-0	7/23/2007	Yes	6.4	YES - COC
Trichlorofluoromethane	200	ND 50.0	NA	NA	No	NA	
Vanadium	72000	53.9	HD-WPL-SB-111-11-0	4/19/2007	No	NA	
Vinyl Acetate	180	ND	NA	NA a/a/aaaa	No	NA 1.7	
Vinyl Chloride	0.2	0.63	HD-B41S-SB-004-03-0	2/8/2008	Yes	1.7	No
Xylenes (Total)	1000	100	OWCA-SP-7	4/26/1995	No	NA	\/=0 00°
Zinc	12000	37000	WPL-15-B-3	7/23/1991	Yes	31000	YES - COC

NA - Not Applicable ND - Not Detected * Essential Nutrient

Table 5 Statistical Summaries and Identification of Exposure Point Concentrations Former York Naval Ordnance Plant, York, PA

East Campus Soils 0-2 feet

	Maximum Detected	Mean	95%UCL	%		Exposure Point Concentration
Constituent of Concern	mg/kg	mg/kg	mg/kg	Nondetects	Distribution	mg/kg
Tetrachloroethene	403	2.947	21.73	85.40%	No Discernible Distribution	21.73

East Campus Soils 0-15 feet

Constituent of Concern	Maximum Detected mg/kg	Mean mg/kg	95%UCL mg/kg	% Nondetects	Distribution	Exposure Poin Concentration mg/kg
Arsenic	29.1	5.467	5.933	0.46%	No Discernible Distribution	5.933
Chromium	507	30.12	48.82	0%	No Discernible Distribution	48.82
Hexavalent Chromium	254	4.407	14.56	75.37%	No Discernible Distribution	14.56
Thallium	20	0.375	0.542	83.98%	No Discernible Distribution	0.542
1,2-Dichloroethane	4.1	0.0182	0.135	99.35%	No Discernible Distribution	0.135
Tetrachloroethene	660	2.464	13.66	89.43%	No Discernible Distribution	13.66
Vinyl Chloride	2.5	0.0333	0.11	91.24%	No Discernible Distribution	0.11

West Campus Soils 0-2 feet

Constituent of Concern	Maximum Detected mg/kg	Mean mg/kg	95%UCL mg/kg	% Nondetects	Distribution	Exposure Poin Concentration mg/kg
Arsenic	29	5.909	6.619	0.93%	No Discernible Distribution	6.619
Cadmium	112	2.6	7.384	28.04%	No Discernible Distribution	7.384
Chromium	3820	78.24	236.2	0%	No Discernible Distribution	236.2
Dimethylphthalate	0.066	NA	NA	98.70%	NA	0.066
Tetrachloroethene	8.1	0.21	0.831	77.36%	Lognormal	0.831
Thallium	22	0.664	1.69	95.10%	No Discernible Distribution	1.69
Trichloroethene	7.8	0.177	0.758	41.51%	No Discernible Distribution	0.758

West Campus Soils 0-15 feet

	Maximum					Exposure Point
	Detected	Mean	95%UCL	%		Concentration
Constituent of Concern	mg/kg	mg/kg	mg/kg	Nondetects	Distribution	mg/kg
Antimony	122	1.505	2.407	70.03%	No Discernible Distribution	2.407
Arsenic	221	6.58	7.722	2.09%	No Discernible Distribution	7.722
Cadmium	224	2.18	6.468	47.64%	No Discernible Distribution	6.468
Chromium	8200	108.9	244.4	0%	No Discernible Distribution	244.4
Thallium	212	1.343	2.625	79.02%	No Discernible Distribution	2.625
Zinc	37000	268.2	707.5	0%	No Discernible Distribution	707.5
Aroclor 1254	270	1.91	9.264	68.78%	Lognormal	9.264
Benzo(a)pyrene	74	0.73	2.058	61.74%	No Discernible Distribution	2.058
Dimethylphthalate	0.066	NA	NA	99.61%	NA	0.066
Hexachlorobenzene	4.36	NA	NA	99.61%	NA	4.36
Tetrachloroethene	1400	4.098	27.56	70.05%	No Discernible Distribution	27.56
Trichloroethene	460	1.887	9.65	51.05%	No Discernible Distribution	9.65

NA - Statistics not available for data sets with very few detected results.

Exposure Point Concentrations for Lead in Soil

	Maximum Detected Lead		Exposure Point Conc.	
	Conc.	%	(Mean)	
Media	mg/kg	Nondetects	mg/kg	Distribution
East Campus Soils 0-15'	1580	3.65%	33.42	No Discernible Distribution
West Campus Soils 0-2'	1000	1.87%	67.53	No Discernible Distribution
West Campus Soils 0-15'	2760	0.52%	59.78	No Discernable Distribution

Table 6 Dermal Contact with Surface Soil by a Maintenance Worker - East Campus Former York Naval Ordnance Plant, York, PA

			Total Ha	azard Quotient =	0.0	Tot	al Cancer Risk =	0E+00
Tetrachloroethene	2.17E+01	0.00E+00	0.00E+00	6.00E-03	0.00E+00	0.00E+00	2.10E-03	0.00E+00
Volatiles	mg/kg	FIACTION	mg/kg-day	mg/kg-day	nazaru muex	mg/kg-day	1/(mg/kg-day)	r ISK
Constituent		Fraction			Hazard Index		•	Risk
	in Soil	Absorption	Intake	RfD		Intake	Slope Factor	Cancer
	Concentration	Dermal	Average Daily	Dermal Chronic		Lifetime Daily	Dermal Cancer	
						Average		
	Λ10	- Averaging tim	ie - caromogenic =	days	20000	FADLE Clipt. 2	30	
		0 0	ie - carcinogenic =	,	25550	PADEP Chpt. 2		
	AT _n - A		noncarcinogenic =	-	9125	PADEP Chpt. 2		
			W - Body weight =	3 3	70	PADEP Chpt. 2	50	
			Conversion factor =	•	1.00E-06			
			xposure duration =	•	25	PADEP Chpt. 2		
	•		osure frequency =		180	PADEP Chpt. 2	50	
	A		sortpion fraction =	J	Constituent-specific	USEPA, 2004		
		AH - A	Adherence factor =	mg/cm ²	0.04	USEPA, 2004		
	SA - Su	rface area availa	able for exposure =	cm ² /shift	3300	USEPA, 2004		
		Cs - Con	centration in soil =	mg/kg	chem. spec.	Site-specific		
				BW*AT				
	intak	e (mg/kg-day) =	<u>Cs*S</u>	SA*AH*ABS*EF*E	D"CF			
		/ // /)	0 +0	A + A I + A D O + E E + E	D+0E			

Table 7 Incidental Ingestion of Surface Soil by a Maintenance Worker - East Campus Former York Naval Ordnance Plant, York, PA

		Total	Hazard Quotient =	0.0013	To	tal Cancer Risk =	5.74E-09
Volatiles Tetrachloroethene	2.17E+01	7.65E-06	6.00E-03	1.28E-03	2.73E-06	2.10E-03	5.74E-09
Constituent	mg/kg	mg/kg-day	mg/kg-day	Index	mg/kg-day	1/(mg/kg-day)	Cancer Risk
	in Soil	Intake	Oral Chronic RfD	Hazard	Daily Intake	Slope Factor	
	Concentration				Lifetime	Oral Cancer	
					Average		
A1,	- Averaging time	- carcinogenic =	days	25550	PADEP Chpt.	250	
	veraging time - no	ŭ	,	9125	PADEP Chpt.		
		· Body weight =	· ·	70	PADEP Chpt.		
		version factor =		1.00E-06	D. D		
	ED - Expo	osure duration =	years	25	PADEP Chpt.	250	
	EF - Expos	ure frequency =	shifts/year	180	PADEP Chpt.	250	
	IngR - Ingesti	on rate for soil =	0 0	50	PADEP Chpt.	250	
	Cs - Conce	ntration in soil =	mg/kg	chem. spec.	Site-specific		
			BW*AT				
Inta	ake (mg/kg-day) =		Cs*IngR*EF*ED*CF	-			
		·			_		

Table 8 Inhalation Exposure to Surface Soil by a Maintenance Worker - East Campus Former York Naval Ordnance Plant, York, PA

•				Total Hazard Index:	0.0068	Total (Cancer Risk =	2.53E-08
Volatiles Tetrachloroethene	2.17E+01	1.31E+04	2.73E-04	4.00E-02	6.82E-03	9.74E-02	2.60E-07	2.53E-08
Constituent	Concentration in Soil mg/kg	Transport Factor	Noncarc. Exposure Concentration mg/m ³	Inhalation Reference Concentration mg/m³	Hazard Index	Carc. Exposure Concentration ug/m³	Inhalation Unit Risk (ug/m³) ⁻¹	Cancer Risk
	AT _{ci} -	TF - Transport factor = i - Averaging time - carcinogenic =		(mg/kg)/(mg/m ³) hours	Constituent-specific 613,200	PADEP Chpt. 250 USEPA, 2009		
	Carcinogen Ex	Cs - Conc Cs - Conc EF - Exp ED - Ex		AT _{ni} *TF Cs*ED*EF*ET*(1000 ug/mg) AT _{ci} *TF mg/kg shifts/year years hours/shift hours	see below 180 25 8 219,000	Site-specific PADEP Chpt. 250 PADEP Chpt. 250 PADEP Chpt. 250 USEPA, 2009		
	Noncarcinogen Ex	nosure Conce	ntration (mg/m³) –	Cs*EF*ED*ET				

Table 9
Dermal Exposure to Surface and Subsurface Soil by a Construction Worker - East Campus
Former York Naval Ordnance Plant, York, PA

1,2-Dichloroethane Tetrachloroethene

Vinyl Chloride

1.35E-01 1.37E+01 1.10E-01 0.00

0.00

0.00E+00 0.00E+00 0.00E+00

	Intake (mg/kg-day) =	take (mg/kg-day) = $\frac{\text{Cs*S/}}{\text{Cs - Concentration in soil}} =$			<u>D*CF</u>			
	Cs - Concentration in soil = SA - Surface area available for exposure = AH - Adherence factor = ABS - Dermal absortpion fraction = EF - Exposure frequency = ED - Exposure duration = CF - Conversion factor = BW - Body weight = AT _n - Averaging time - carcinogenic = AT _c - Averaging time - carcinogenic =		cm²/shift mg/cm² unitless shifts/year years kg/mg kg days	See below 3300 0.3 Constituent-specific 60 1 1.00E-06 70 365 25550	Site-specific USEPA, 2004 USEPA, 2004 USEPA, 2004 Reasonable assumption Reasonable assumption PADEP Chpt. 250 Reasonable assumption PADEP Chpt. 250			
Constituent	Concentration in Soil mg/kg	Dermal Absorption Fraction	Average Daily Intake mg/kg-day	Dermal Chronic RfD mg/kg-day	Hazard Quotient	Average Lifetime Daily Intake mg/kg-day	Dermal Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics								
Arsenic	5.93E+00	0.03	4.14E-07	3.00E-04	1.38E-03	5.91E-09	1.50E+00	8.87E-09
Chromium	4.88E+01	0.00	0.00E+00	7.50E-05	0.00E+00	0.00E+00	2.00E+01	0.00E+00
Hexavalent Chromium	1.46E+01	0.00	0.00E+00	7.50E-05	0.00E+00	0.00E+00	2.00E+01	0.00E+00
Thallium Volatiles	5.42E-01	0.00	0.00E+00	1.00E-05	0.00E+00	0.00E+00	NA	NA

NA - Not Available Total Hazard Index: 0.0014 Total Cancer Risk: 8.87E-09

6.00E-03 6.00E-03 3.00E-03 0.00E+00 0.00E+00

0.00E+00

0.00E+00 0.00E+00 0.00E+00 9.10E-02 2.10E-03 7.20E-01 0.00E+00 0.00E+00 0.00E+00

Table 10
Incidental Ingestion of Surface and Subsurface Soil by a Construction Worker - East Campus
Former York Naval Ordnance Plant, York, PA

Intake (mg/kg-day) =	<u>Cs*IngR*EF</u> BW* <i>F</i>			
Cs - Concent	ration in soil = mg/k	g See below	Site-specific	
IngR - Ingestior	rate for soil = mg/sh	nift 330	USEPA, 2002	
EF - Exposul	re frequency = shifts/y	ear 60	Reasonable assumption	
ED - Expos	ure duration = year	s 1	Reasonable assumption	
CF - Conve	ersion factor = kg/m	g 1.00E-06		
BW - E	Body weight = kg	70	PADEP Chpt. 250	
AT _n - Averaging time - none	carcinogenic = days	365	Reasonable assumption	
AT _c - Averaging time - o	carcinogenic = days	s 25550	PADEP Chpt. 250	

	Concentration in Soil	Average Daily Intake	Oral Chronic RfD	Hazard	Average Lifetime Daily Intake	Oral Cancer Slope Factor	Owner Bist
Constituent	mg/kg	mg/kg-day	mg/kg-day	Quotient	mg/kg-day	1/(mg/kg-day)	Cancer Risk
Inorganics							
Arsenic	5.93E+00	4.60E-06	3.00E-04	1.53E-02	6.57E-08	1.50E+00	9.85E-08
Chromium	4.88E+01	3.78E-05	3.00E-03	1.26E-02	5.40E-07	5.00E-01	2.70E-07
Hexavalent Chromium	1.46E+01	1.13E-05	3.00E-03	3.76E-03	1.61E-07	5.00E-01	8.06E-08
Thallium	5.42E-01	4.20E-07	1.00E-05	4.20E-02	6.00E-09	NA	NA
Volatiles							
1,2-Dichloroethane	1.35E-01	1.05E-07	6.00E-03	1.74E-05	1.49E-09	9.10E-02	1.36E-10
Tetrachloroethene	1.37E+01	1.06E-05	6.00E-03	1.76E-03	1.51E-07	2.10E-03	3.18E-10
Vinyl Chloride	1.10E-01	8.52E-08	3.00E-03	2.84E-05	1.22E-09	7.20E-01	8.77E-10

NA - Not Available Total Hazard Index = 0.076 Total Cancer Risk = 4.51E-07

Table 11
Inhalation Exposure To Surface and Subsurface Soil by a Construction Worker - East Campus Former York Naval Ordnance Plant, York, PA

Noncarcinogen Exposure Concentration (mg/m³) = $\frac{Cs*EF*ED*ET}{AT_n*TF}$

Carcinogen Exposure Concentration (ug/m³) = $\frac{\text{Cs*ED*EF*ET*}(1000 \text{ ug/mg})}{\text{AT}_c*\text{TF}}$

Cs - Concentration in soil = mg/kg Constituent-specific Site-specific EF - Exposure frequency = shifts/year 60 Reasonable a

TF - Transport factor = $(mg/kg)/(mg/m^3)$ Constituent-specific PADEP Chpt. 250 AT_c - Averaging time - carcinogenic = hours 613,200 USEPA, 2009

Constituent	Concentration in Soil mg/kg	Transport Factor	Noncarc. Exposure Concentration mg/m ³	Inhalation Reference Concentration mg/m ³	Hazard Index	Carc. Exposure Concentration ug/m ³	Inhalation Unit Risk (ug/m³) ⁻¹	Cancer Risk
Inorganics								
Arsenic	5.93E+00	1.00E+10	3.25E-11	1.50E-05	2.17E-06	4.64E-10	4.30E-03	2.00E-12
Chromium	4.88E+01	1.00E+10	2.68E-10	1.00E-04	2.68E-06	3.82E-09	8.40E-02	3.21E-10
Hexavalent Chromium	1.46E+01	1.00E+10	7.98E-11	1.00E-04	7.98E-07	1.14E-09	8.40E-02	9.57E-11
Thallium	5.42E-01	1.00E+10	2.97E-12	NA	NA	4.24E-11	NA	NA
Volatiles								
1,2-Dichloroethane	1.35E-01	1.31E+04	5.65E-07	7.00E-03	8.07E-05	8.07E-06	2.60E-05	2.10E-10
Tetrachloroethene	1.37E+01	1.31E+04	5.71E-05	6.00E-02	9.52E-04	8.16E-04	2.60E-07	2.12E-10
Vinyl Chloride	1.10E-01	1.32E+04	4.57E-07	1.00E-01	4.57E-06	6.52E-06	4.40E-06	2.87E-11

Total Hazard Index: 0.001 Total Cancer Risk = 8.69E-10

Table 12 Dermal Contact with Surface Soil by an Adolescent Trespasser - East Campus Former York Naval Ordnance Plant, York, PA

Volatiles Tetrachloroethene	2.17E+01	0.00E+00	0.00E+00	6.00E-03	0.00E+00	0.00E+00	2.10E-03	0.00E+00
Constituent	Concentration in Soil mg/kg	Dermal Absorption Fraction	Average Daily Intake mg/kg-day	Dermal Chronic RfD mg/kg-day	Hazard Index	Average Lifetime Daily Intake mg/kg-day	Dermal Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
	ABS AT _n - Ave	AH - Ad S - Dermal abso EF - Expos ED - Exp CF - Cor BW raging time - no	le for exposure = herence factor = ortpion fraction = sure frequency = osure duration = nversion factor = - Body weight = oncarcinogenic = - carcinogenic =	cm²/event mg/cm² unitless events/year years kg/mg kg days days	7548 0.04 Constituent-specific 24 12 1.00E-06 45.36 4380 25550	USEPA, 2004 USEPA, 2004 USEPA, 2004 Reasonable ass Reasonable ass USEPA 2011, E PADEP Chpt. 2 PADEP Chpt. 2	eumption EFH 50	
			entration in soil =	<u>*AH*ABS*EF*</u> BW*AT mg/kg	chem. spec.			

Table 13 Incidental Ingestion of Surface Soil by an Adolescent Trespasser - East Campus Former York Naval Ordnance Plant, York, PA

Intake	(mg/kg-day) =		Cs*IngR*EF*ED*CF	=			
			BW*AT				
	Cs - Concen	tration in soil =	mg/kg	chem. spec.			
	IngR - Ingestion			50	PADEP Chpt.	250	
		re frequency =	•	24	Reasonable a		
	•	sure duration =	•	12	Reasonable a	•	
	•	ersion factor =	•	1.00E-06	Neasonable a	issumption	
				45.36	USEPA 2011	CCU	
Λ.Τ. Λ. (a.m.)		Body weight =	•				
AI _n - Avera	aging time - non	icarcinogenic =	days	4380	PADEP Chpt.	250	
AT _c - A	veraging time -	carcinogenic =	days	25550	PADEP Chpt.	250	
					Average		
	Concentrati	Average			Lifetime	Oral Cancer	
	on in Soil	Daily Intake	Oral Chronic RfD	Hazard	Daily Intake	Slope Factor	
Constituent	mg/kg	mg/kg-day	mg/kg-day	Index	mg/kg-day	1/(mg/kg-day)	Cancer Risk
Volatiles							
Tetrachloroethene	2.17E+01	1.57E-06	6.00E-03	2.62E-04	2.70E-07	2.10E-03	5.67E-10
		Total	Hazard Quotient =	0.00026	Tot	al Cancer Risk =	5.67E-10

Table 14 Inhalation Exposure to Surface Soil by an Adolescent Trespasser - East Campus Former York Naval Ordnance Plant, York, PA

	eraging time - TF -	Noncarc. Exposure Concentration mg/m³ 1.82E-05	Inhalation Reference Concentration mg/m³ 4.00E-02	105,120 Constituent-specific 613,200 Hazard Index 4.54E-04	USEPA, 2009	•	Cancer Ris
AT _c	eraging time - TF - - Averaging tim	noncarcinogenic = Transport factor = ne - carcinogenic = Noncarc. Exposure Concentration	hours (mg/kg)/(mg/m³) hours Inhalation Reference Concentration	105,120 Constituent-specific 613,200	USEPA, 2009 PADEP Chpt. 250 USEPA, 2009 Carc. Exposure Concentration	Inhalation Unit Risk	Cancer Ris
AT _c	eraging time - TF - - Averaging tim	noncarcinogenic = Transport factor = ne - carcinogenic = Noncarc. Exposure Concentration	hours (mg/kg)/(mg/m³) hours Inhalation Reference Concentration	105,120 Constituent-specific 613,200	USEPA, 2009 PADEP Chpt. 250 USEPA, 2009 Carc. Exposure Concentration	Inhalation Unit Risk	Cancer Ris
	eraging time - TF -	noncarcinogenic = Transport factor = ne - carcinogenic =	hours (mg/kg)/(mg/m³)	105,120 Constituent-specific	USEPA, 2009 PADEP Chpt. 250 USEPA, 2009	•	
AT _n - Av	eraging time -	noncarcinogenic =	hours	105,120	USEPA, 2009	•	
AT _n - Av		•	,	•		imption	
						IIIDUUII	
		- Exposure time =	hours/day	4	Reasonable assu		
				= :			
			mg/kg	see below	DADED OL 1 050		
cinogen E	xposure Conc	entration (ug/m°) = <u>(</u>	AT _c *TF				
			- +==+==+(++++++++++++++++++++++++++++++				
inogen Ex	cposure Conce	entration (mg/m³) =	<u>Cs*EF*ED*ET</u> AT _n *TF				
	J	cinogen Exposure Conc Cs - Con EF - Ex _l ED - E	Cs - Concentration in soil = EF - Exposure frequency = ED - Exposure duration =	AT _n *TF cinogen Exposure Concentration (ug/m³) = Cs*ED*EF*ET*(1000 ug/mg) AT _c *TF Cs - Concentration in soil = mg/kg EF - Exposure frequency = days/year ED - Exposure duration = years	AT_n^*TF cinogen Exposure Concentration (ug/m³) = $\frac{Cs^*ED^*EF^*ET^*(1000 \text{ ug/mg})}{AT_c^*TF}$ $Cs - Concentration in soil = mg/kg see below \\ EF - Exposure frequency = days/year 24 \\ ED - Exposure duration = years 12$	AT_n^*TF cinogen Exposure Concentration (ug/m³) = $\frac{Cs^*ED^*EF^*ET^*(1000 \text{ ug/mg})}{AT_c^*TF}$ $Cs - Concentration in soil = mg/kg see below$ $EF - Exposure frequency = days/year 24 PADEP Chpt. 250 ED - Exposure duration = years 12 PADEP Chpt. 250$	AT_n^*TF cinogen Exposure Concentration (ug/m³) = $\frac{Cs^*ED^*EF^*ET^*(1000 \text{ ug/mg})}{AT_c^*TF}$ $Cs - Concentration in soil = mg/kg see below$ $EF - Exposure frequency = days/year 24 PADEP Chpt. 250$ $ED - Exposure duration = years 12 PADEP Chpt. 250$

Table 15
Dermal Contact with Surface Soil by a Maintenance Worker - West Campus
Former York Naval Ordnance Plant, York, PA

	Intake	(mg/kg-day) =	Cs*SA	A*AH*ABS*EF*E BW*AT	ED*CF			
		Cs - Conce	entration in soil =	mg/kg	See below	Site-specific		
	SA - Surfac	e area availabl	e for exposure =	cm ² /shift	3300	USEPA, 2004		
			herence factor =	mg/cm ²	0.04	USEPA, 2004		
	ABS		ortpion fraction =	unitless	Constituent-specific	USEPA, 2004		
			sure frequency =	shifts/year	180	PADEP Chpt. 2	50	
			osure duration =	years	25	PADEP Chpt. 2		
			nversion factor =	kg/mg	1.00E-06	- •		
		BW	- Body weight =	kg	70	PADEP Chpt. 2	50	
	AT _n - Averaging time - noncarcinogenic =			days	9125	PADEP Chpt. 2	50	
	AT _c - A	veraging time	- carcinogenic =	days	25550	PADEP Chpt. 250		
Constituent	Concentration in Soil mg/kg	Dermal Absorption Fraction	Average Daily Intake mg/kg-day	Dermal Chronic RfD mg/kg-day	Hazard Index	Average Lifetime Daily Intake mg/kg-day	Dermal Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics	in Soil mg/kg	Absorption Fraction	Intake mg/kg-day	RfD mg/kg-day	Hazard Index	Lifetime Daily Intake mg/kg-day	Slope Factor 1/(mg/kg-day)	Risk
Inorganics Arsenic	in Soil mg/kg 6.62E+00	Absorption Fraction	Intake mg/kg-day 1.85E-07	RfD mg/kg-day 3.00E-04	Hazard Index 6.16E-04	Lifetime Daily Intake mg/kg-day	Slope Factor 1/(mg/kg-day) 1.50E+00	Risk 9.89E-08
Inorganics Arsenic Cadmium	in Soil mg/kg 6.62E+00 7.38E+00	Absorption Fraction 0.03 0.001	Intake mg/kg-day 1.85E-07 6.87E-09	RfD mg/kg-day 3.00E-04 2.50E-05	Hazard Index 6.16E-04 2.75E-04	Lifetime Daily Intake mg/kg-day 6.59E-08 2.45E-09	Slope Factor 1/(mg/kg-day) 1.50E+00 NA	9.89E-08 NA
Inorganics Arsenic Cadmium Chromium	in Soil mg/kg 6.62E+00 7.38E+00 2.36E+02	Absorption Fraction 0.03 0.001 0.0	Intake mg/kg-day 1.85E-07 6.87E-09 0.00E+00	RfD mg/kg-day 3.00E-04 2.50E-05 7.50E-05	6.16E-04 2.75E-04 0.00E+00	Lifetime Daily Intake mg/kg-day 6.59E-08 2.45E-09 0.00E+00	Slope Factor 1/(mg/kg-day) 1.50E+00 NA 2.00E+01	9.89E-08 NA 0.00E+00
Inorganics Arsenic Cadmium Chromium Thallium	in Soil mg/kg 6.62E+00 7.38E+00	Absorption Fraction 0.03 0.001	Intake mg/kg-day 1.85E-07 6.87E-09	RfD mg/kg-day 3.00E-04 2.50E-05	Hazard Index 6.16E-04 2.75E-04	Lifetime Daily Intake mg/kg-day 6.59E-08 2.45E-09	Slope Factor 1/(mg/kg-day) 1.50E+00 NA	9.89E-08 NA
Inorganics Arsenic Cadmium Chromium	in Soil mg/kg 6.62E+00 7.38E+00 2.36E+02	Absorption Fraction 0.03 0.001 0.0	Intake mg/kg-day 1.85E-07 6.87E-09 0.00E+00	RfD mg/kg-day 3.00E-04 2.50E-05 7.50E-05	6.16E-04 2.75E-04 0.00E+00	Lifetime Daily Intake mg/kg-day 6.59E-08 2.45E-09 0.00E+00	Slope Factor 1/(mg/kg-day) 1.50E+00 NA 2.00E+01	9.89E-08 NA 0.00E+00
Inorganics Arsenic Cadmium Chromium Thallium Semivolatiles Dimethylphthalate	in Soil mg/kg 6.62E+00 7.38E+00 2.36E+02 1.69E+00	0.03 0.001 0.0 0.0	Intake mg/kg-day 1.85E-07 6.87E-09 0.00E+00 0.00E+00	RfD mg/kg-day 3.00E-04 2.50E-05 7.50E-05 1.00E-05	6.16E-04 2.75E-04 0.00E+00 0.00E+00	Lifetime Daily Intake mg/kg-day 6.59E-08 2.45E-09 0.00E+00 0.00E+00	Slope Factor 1/(mg/kg-day) 1.50E+00 NA 2.00E+01 NA	9.89E-08 NA 0.00E+00 NA

Total Hazard Quotient =

0.001

Total Cancer Risk = 9.89E-08

Table 16 Incidental Ingestion of Surface Soil by a Maintenance Worker - West Campus Former York Naval Ordnance Plant, York, PA

Intake (mg/kg-day) = <u>Cs</u>	IngR*EF*ED* BW*AT	<u>CF</u>	
Cs - Concentration in soil =	mg/kg	See below	Site-specific
IngR - Ingestion rate for soil =	mg/shift	50	PADEP Chpt. 250
EF - Exposure frequency =	shifts/year	180	PADEP Chpt. 250
ED - Exposure duration =	years	25	PADEP Chpt. 250
CF - Conversion factor =	kg/mg	1.00E-06	·
BW - Body weight =	kg	70	PADEP Chpt. 250
AT _n - Averaging time - noncarcinogenic =	days	9125	PADEP Chpt. 250
AT _c - Averaging time - carcinogenic =	days	25550	PADEP Chpt. 250

Constituent	Concentration in Soil mg/kg	Average Daily Intake mg/kg-day	Oral Chronic RfD mg/kg-day	Hazard Index	Average Lifetime Daily Intake mg/kg-day	Oral Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics							
Arsenic	6.62E+00	2.33E-06	3.00E-04	7.77E-03	8.33E-07	1.5	1.25E-06
Cadmium	7.38E+00	2.60E-06	5.00E-04	5.20E-03	9.29E-07	NA	NA
Chromium	2.36E+02	8.32E-05	3.00E-03	2.77E-02	2.97E-05	5.00E-01	1.49E-05
Thallium	1.69E+00	5.95E-07	1.00E-05	5.95E-02	2.13E-07	NA	NA
Semivolatiles							
Dimethylphthalate Volatiles	6.60E-02	2.32E-08	NA	NA	8.30E-09	NA	NA
Tetrachloroethene	8.31E-01	2.93E-07	6.00E-03	4.88E-05	1.05E-07	2.10E-03	2.20E-10
Trichloroethene	7.58E-01	2.67E-07	5.00E-04	5.34E-04	9.54E-08	4.60E-02	4.39E-09

Total Hazard Quotient = 0.10 Total Cancer Risk = 1.61E-05

Table 17
Inhalation Exposure to Surface Soil by a Maintenance Worker - West Campus
Former York Naval Ordnance Plant, York, PA

Noncarcinogen Exposure Concentration (mg/m³) = $\frac{Cs*EF*ED*ET}{AT_{ni}*TF}$

Carcinogen Exposure Concentration (ug/m³) = Cs*ED*EF*ET*(1000 ug/mg)

AT_{ci}*TF

Cs - Concentration in soil = Site-specific PADEP Chpt. 250 See below mg/kg EF - Exposure frequency = shifts/year 180 years PADEP Chpt. 250 ED - Exposure duration = 25 PADEP Chpt. 250 ET - Exposure time = hours/shift 8 AT_{ni} - Averaging time - noncarcinogenic = hours 219,000 USEPA, 2009

TF - Transport factor = $(mg/kg)/(mg/m^3)$ Constituent-specific PADEP Chpt. 250 AT $_{ci}$ - Averaging time - carcinogenic = hours 613,200 USEPA, 2009

Constituent	Concentration in Soil mg/kg	Transport Factor	Noncarc. Exposure Concentration mg/m ³	Inhalation Reference Concentration mg/m³	Hazard Index	Carc. Exposure Concentration ug/m³	Inhalation Unit Risk (ug/m³) ⁻¹	Cancer Risk
Inorganics								
Arsenic	6.62E+00	1.00E+10	1.09E-10	1.50E-05	7.25E-06	3.89E-08	4.30E-03	1.67E-10
Cadmium	7.38E+00	1.00E+10	1.21E-10	2.00E-05	6.07E-06	4.34E-08	1.80E-03	7.80E-11
Chromium	2.36E+02	1.00E+10	3.88E-09	1.00E-04	3.88E-05	1.39E-06	8.40E-02	1.16E-07
Thallium	1.69E+00	1.00E+10	2.78E-11	NA	NA	9.92E-09	NA	NA
Semivolatiles								
Dimethylphthalate	6.60E-02	1.00E+10	1.08E-12	NA	NA	3.87E-10	NA	NA
Volatiles								
Tetrachloroethene	8.31E-01	1.31E+04	1.04E-05	4.00E-02	2.61E-04	3.72E-03	2.60E-07	9.68E-10
Trichloroethene	7.58E-01	1.31E+04	9.51E-06	2.30E-03	4.14E-03	3.40E-03	4.10E-06	1.39E-08

Total Hazard Index: 0.004 Total Cancer Risk = 1.32E-07

Table 18
Dermal Exposure to Surface and Subsurface Soil by a Construction Worker - West Campus
Former York Naval Ordnance Plant, York, PA

Intake (mg/kg-day) =	Cs*SA*AH*ABS*EF	*ED*CF	
Cs - Concentration in		See below	Site-specific
SA - Surface area available for expo AH - Adherence f	actor = mg/cm ²	3300 0.3	USEPA, 2004 USEPA, 2004
ABS - Dermal absortpion fra EF - Exposure frequ	iency = shifts/year	Constituent-specific 60	Reasonable assumption
ED - Exposure dur CF - Conversion f	actor = kg/mg	1 1.00E-06	Reasonable assumption
BW - Body w AT _n - Averaging time - noncarcino	0	70 365	PADEP Chpt. 250 Reasonable assumption
AT _c - Averaging time - carcino	genic = days	25550	PADEP Chpt. 250

Constituent	Concentration in Soil mg/kg	Dermal Absorption Fraction	Average Daily Intake mg/kg-day	Dermal Chronic RfD mg/kg-day	Hazard Quotient	Average Lifetime Daily Intake mg/kg-day	Dermal Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics								
Antimony	2.41E+00	0.0	0.00E+00	6.00E-05	0.00E+00	0.00E+00	NA	NA
Arsenic	7.72E+00	0.03	5.39E-07	3.00E-04	1.80E-03	7.69E-09	1.50E+00	1.15E-08
Cadmium	6.47E+00	0.001	1.50E-08	2.50E-05	6.01E-04	2.15E-10	NA	NA
Chromium	2.44E+02	0.0	0.00E+00	7.50E-05	0.00E+00	0.00E+00	2.00E+01	0.00E+00
Thallium	2.63E+00	0.0	0.00E+00	1.00E-05	0.00E+00	0.00E+00	NA	NA
Zinc	7.08E+02	0.0	0.00E+00	3.00E-01	0.00E+00	0.00E+00	NA	NA
Semivolatiles								
Benzo(a)pyrene	2.06E+00	0.13	6.22E-07	NA	NA	8.89E-09	7.30E+00	6.49E-08
Dimethylphthalate	6.60E-02	0.1	1.53E-08	NA	NA	2.19E-10	NA	NA
Hexachlorobenzene	4.36E+00	0.1	1.01E-06	8.00E-04	1.27E-03	1.45E-08	1.60E+00	2.32E-08
PCBs								
Aroclor 1254	9.26E+00	0.14	3.02E-06	2.00E-05	1.51E-01	4.31E-08	2.00E+00	8.61E-08
Volatiles								
Tetrachloroethene	2.76E+01	0.0	0.00E+00	6.00E-03	0.00E+00	0.00E+00	2.10E-03	0.00E+00
Trichloroethene	9.65E+00	0.0	0.00E+00	5.00E-04	0.00E+00	0.00E+00	4.60E-02	0.00E+00

NA - Not Available Total Hazard Index: 0.15 Total Cancer Risk: 1.86E-07

Table 19 Incidental Ingestion of Surface and Subsurface Soil by a Construction Worker - West Campus Former York Naval Ordnance Plant, York, PA

 $\label{eq:mgkg-day} \begin{aligned} &\text{Intake (mg/kg-day)} = & & & & & & \\ && & & & & \\ && & & & \\ && & & & \\ && & & \\ && & & \\ && & & \\ && & \\ && & \\ && & \\ && & \\ && & \\ && & \\ && & \\ && & \\ && \\$

Cs - Concentration in soil = mg/kg See below Site-specific
IngR - Ingestion rate for soil = mg/shift 330 USEPA, 2002
EF - Exposure frequency = shifts/year 60 Reasonable assumption

Reasonable assumption

ED - Exposure duration = years 1

CF - Conversion factor = kg/mg 1.00E-06

 $BW - Body \ weight = kg \ 70 \ PADEP \ Chpt. \ 250$ $AT_n - Averaging \ time - noncarcinogenic = days \ 365 \ Reasonable \ assumption$ $AT_c - Averaging \ time - carcinogenic = days \ 25550 \ PADEP \ Chpt. \ 250$

Constituent	Concentration in Soil mg/kg	Average Daily Intake mg/kg-day	Oral Chronic RfD mg/kg-day	Hazard Quotient	Average Lifetime Daily Intake mg/kg-day	Oral Cancer Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics	g/x.g	mg/ng day	mg/ng uuy	quotioni	mgmg aay	ii(iiigiiig aay)	THOIL
Antimony	2.41E+00	1.87E-06	4.00E-04	4.66E-03	2.66E-08	NA	NA
Arsenic	7.72E+00	5.98E-06	3.00E-04	1.99E-02	8.55E-08	1.50E+00	1.28E-07
Cadmium	6.47E+00	5.01E-06	5.00E-04	1.00E-02	7.16E-08	NA	NA
Chromium	2.44E+02	1.89E-04	3.00E-03	6.31E-02	2.71E-06	5.00E-01	1.35E-06
Thallium	2.63E+00	2.03E-06	1.00E-05	2.03E-01	2.91E-08	NA	NA
Zinc	7.08E+02	5.48E-04	3.00E-01	1.83E-03	7.83E-06	NA	NA
Semivolatiles							
Benzo(a)pyrene	2.06E+00	1.59E-06	NA	NA	2.28E-08	7.30E+00	1.66E-07
Dimethylphthalate	6.60E-02	5.11E-08	NA	NA	7.31E-10	NA	NA
Hexachlorobenzene	4.36E+00	3.38E-06	8.00E-04	4.22E-03	4.83E-08	1.60E+00	7.72E-08
PCBs							
Aroclor 1254	9.26E+00	7.18E-06	2.00E-05	3.59E-01	1.03E-07	2.00E+00	2.05E-07
Volatiles							
Tetrachloroethene	2.76E+01	2.14E-05	6.00E-03	3.56E-03	3.05E-07	2.10E-03	6.41E-10
Trichloroethene	9.65E+00	7.48E-06	5.00E-04	1.50E-02	1.07E-07	4.60E-02	4.91E-09

NA - Not Available Total Hazard Index = 0.68 Total Cancer Risk = 1.94E-06

Table 20 Inhalation Exposure to Surface and Subsurface Soil by a Construction Worker - West Campus Former York Naval Ordnance Plant, York, PA

Noncarcinogen Exposure Concentration (mg/m³) = $\frac{Cs*EF*ED*ET}{AT_n*TF}$

Carcinogen Exposure Concentration (ug/m³) = Cs*ED*EF*ET*(1000 ug/mg)

AT_c*TF

Cs - Concentration in soil = mg/kg See below Site-specific

EF - Exposure frequency = shifts/year 60 Reasonable assumption
ED - Exposure duration = years 1 Reasonable assumption
ET - Exposure time = hours/shift 8 PADEP Chpt. 250

AT_n - Averaging time - noncarcinogenic = hours 8,760 Reasonable assumption

TF - Transport factor = $(mg/kg)/(mg/m^3)$ Constituent-specific PADEP Chpt. 250 AT_c - Averaging time - carcinogenic = hours 613,200 USEPA, 2009

Noncarc. Concentration Exposure Inhalation Reference Carc. Exposure Inhalation Concentration Concentration Concentration **Unit Risk** in Soil Transport Cancer ug/m³ mg/m³ mg/m³ (ug/m³)⁻¹ Constituent mg/kg Factor **Hazard Index** Risk Inorganics Antimony 2.41E+00 1.00E+10 1.32E-11 NA NA 1.88E-10 NA NA 2.82E-06 1.50E-05 6.04E-10 4.30E-03 2.60E-12 Arsenic 7.72E+00 1.00E+10 4.23E-11 Cadmium 6.47E+00 1.00E+10 3.54E-11 2.00E-05 1.77E-06 5.06E-10 1.80E-03 9.11E-13 Chromium 2.44E+02 1.00E+10 1.34E-09 1.00E-04 1.34E-05 1.91E-08 8.40E-02 1.61E-09 Thallium 2.63E+00 1.00E+10 1.44E-11 NA 2.05E-10 NA NA NA 7inc 7.08E+02 1.00E+10 3.88E-09 NA NA 5.54E-08 NA NA Semivolatiles 2.06E+00 1.00E+10 1.13E-11 NA NA 1.61E-10 1.10E-03 1.77E-13 Benzo(a)pyrene Dimethylphthalate 6.60E-02 1 00F+10 3 62F-13 NA NA 5 17F-12 NA NA Hexachlorobenzene 4.36E+00 1.00E+10 2.39E-11 NA NA 3.41E-10 4.60E-04 1.57E-13 **PCBs** 5.70E-04 4.13E-13 Aroclor 1254 9.26E+00 1.00E+10 5.08E-11 NA NA 7.25E-10 Volatiles Tetrachloroethene 2.76E+01 1.31E+04 1.15E-04 4.00E-02 2.88E-03 1.65E-03 2.60E-07 4.28E-10 9.65E+00 2.30E-03 1.75E-02 Trichloroethene 1.31E+04 4.04E-05 5.77E-04 4.10E-06 2.36E-09

NA - Not Available Total Hazard Index: 0.020 Total Cancer Risk = 4.40E-09

Table 21 Dermal Contact with Surface Soil by an Adolescent Trespasser - West Campus Former York Naval Ordnance Plant, York, PA

Intake (mg/kg-day) = <u>Cs*SA</u>	*AH*ABS*EF* BW*AT	ED*CF	
Cs - Concentration in soil = SA _c - Skin surface area available for exposure = AH _c - Adherence factor = ABS - Dermal absortpion fraction = EF - Exposure frequency = ED - Exposure duration = CF - Conversion factor =	mg/kg cm²/event mg/cm² unitless events/year years kg/mg	See below 7548 0.04 Constituent-specific 24 12 1.00E-06	Site-specific USEPA, 2004 USEPA, 2004 USEPA, 2004 Reasonable assumption Reasonable assumption
BW _c - Body weight = AT _n - Averaging time - noncarcinogenic =	kg	45.36	USEPA, 2011, EFH
	days	4380	PADEP Chpt. 250
AT _n - Averaging time - noncarcinogenic = AT _c - Averaging time - carcinogenic =	days	4380	PADEP Chpt. 250
	days	25550	PADEP Chpt. 250

Average Lifetime Daily Intake For Mutagens (mg/kg-day) = (Cs*EF*ADF $_{adj}$ *ABS*CF)/AT $_{c}$

ADF_{adj} - Age-dependent dermal factor = mg-yr/kg-event 2.23E+02 Calculated

 $\mathsf{ADF}_{\mathsf{adj}} = [(\mathsf{ADAF}_{6\text{-}16} ^* \mathsf{ED}_{6\text{-}16} ^* \mathsf{AH}_c ^* \mathsf{SA}_c) / (\mathsf{BW}_c)] + [(\mathsf{ADAF}_{16\text{-}17} ^* \mathsf{ED}_{16\text{-}17} ^* \mathsf{AH}_a ^* \mathsf{SA}_a) / (\mathsf{BW}_{16\text{-}17})]$

ADAF₆₋₁₆ - Age factor for 6 -16 years = unitless 3 PADEP Chpt. 250 ADAF₁₆₋₁₇ - Age factor for 16 - 17 years = PADEP Chpt. 250 unitless 1 ED_c - Exposure duration for 6 - 16 years = 11 Reasonable assumption years ED_a - Exposure duration for 16 - 17 years = Reasonable assumption year 1 BW₁₆₋₁₇ - Body weight for 16 to 17 years = kg 67.5 USEPA, 2011, EFH SA_a - Adult skin surface area available for exposure = cm²/event 5200 USEPA, 2011, EFH AH_a - Adult adherence factor = mg/cm² 0.04 USEPA, 2004

	Concentration	Dermal	Average Daily	Dermal		Average Lifetime Daily	Dermal Cancer	
Constituent	in Soil mg/kg	Absorption Fraction	Intake mg/kg-day	Chronic RfD mg/kg-day	Hazard Index	Intake mg/kg-day	Slope Factor 1/(mg/kg-day)	Cancer Risk
Inorganics								
Arsenic	6.62E+00	0.03	8.69E-08	3.00E-04	2.90E-04	1.49E-08	1.50E+00	2.23E-08
Cadmium	7.38E+00	0.001	3.23E-09	2.50E-05	1.29E-04	5.54E-10	NA	NA
Thallium	1.69E+00	0.0	0.00E+00	1.00E-05	0.00E+00	0.00E+00	NA	NA
Semivolatiles								
Dimethylphthalate	6.60E-02	0.1	2.89E-09	NA	NA	4.95E-10	NA	NA
Volatiles								
Tetrachloroethene	8.31E-01	0.0	0.00E+00	6.00E-03	0.00E+00	0.00E+00	2.10E-03	0.00E+00
Mutagens								
Chromium	2.36E+02	0.0	0.00E+00	7.50E-05	0.00E+00	0.00E+00	2.00E+01	0.00E+00
Trichloroethene	7.58E-01	0.0	0.00E+00	5.00E-04	0.00E+00	0.00E+00	4.60E-02	0.00E+00

NA - Not available Total Hazard Quotient = 0.00042 Total Cancer Risk = 2.23E-08

Table 22 Incidental Ingestion of Surface Soil by an Adolescent Trespasser - West Campus Former York Naval Ordnance Plant, York, PA

Intake (mg/kg-day) = <u>Cs</u>	*IngR _a *EF*ED* BW _c *AT	<u>CF</u>	
Cs - Concentration in soil =	mg/kg	See below	Site-specific
IngR _a - Ingestion <mark>rate for soil = </mark>	mg/event	100	PADEP Chpt. 250
EF - Exposure frequency = ED - Exposure duration = CF - Conversion factor =	events/year years kg/mg	24 12 1.00E-06	Reasonable assumption Reasonable assumption
BW_c - Body weight =	kg	45.36	USEPA, 2011, EFH
AT _n - Averaging time - noncarcinogenic =	days	4380	PADEP Chpt. 250
AT _c - Averaging time - carcinogenic =	days	25550	PADEP Chpt. 250
Average Lifetime Daily Intake For Mutagen			,
AIF _{adj} - Age-dependent ingestion factor =	mg-yr/kg-even	t 7.42E+01	Calculated
$AIF_{adj} = [(ADAF_{6-16}*ED_{6-16}*IngR_{c}$)/BW _c]+[(ADAf	F ₁₆₋₁₇ *ED ₁₆₋₁₇ *Ir	ngR _a)/BW ₁₆₋₁₇]

$ADAF_{6-16}$ - Age factor for 6 - 16 years =	unitless	3	PADEP Chpt. 250
$ADAF_{16-17}$ - Age factor for 16 - 17 years =	unitless	1	PADEP Chpt. 250
ED _c - Exposure duration for 6 - 16 years =	years	11	Reasonable assumption
ED _a - Exposure duration for 16 - 17 years =	year	1	Reasonable assumption
IngR _c - Child soil ingestion rate =	mg/event	100	PADEP Chpt. 250
BW ₁₆₋₁₇ - Body weight for 16 to 17 years =	kg	67.5	USEPA, 2011, EFH

	Concentration in Soil	Average Daily Intake	Oral Chronic RfD	Hazard	Average Lifetime Daily Intake	Oral Cancer Slope Factor	Cancer
Constituent	mg/kg	mg/kg-day	mg/kg-day	Index	mg/kg-day	1/(mg/kg-day)	Risk
Inorganics							
Arsenic	6.62E+00	9.59E-07	3.00E-04	3.20E-03	1.64E-07	1.5	2.47E-07
Cadmium	7.38E+00	1.07E-06	5.00E-04	2.14E-03	1.83E-07	NA	NA
Thallium	1.69E+00	2.45E-07	1.00E-05	2.45E-02	4.20E-08	NA	NA
Semivolatiles							
Dimethylphthalate	6.60E-02	9.57E-09	NA	NA	1.64E-09	NA	NA
Volatiles							
Tetrachloroethene	8.31E-01	1.20E-07	6.00E-03	2.01E-05	2.07E-08	2.10E-03	4.34E-11
Mutagens							
Chromium	2.36E+02	3.42E-05	3.00E-03	1.14E-02	1.65E-05	5.00E-01	8.24E-06
Trichloroethene	7.58E-01	1.10E-07	5.00E-04	2.20E-04	5.29E-08	4.60E-02	2.43E-09

NA - Not available Total Hazard Quotient = 0.041 Total Cancer Risk = 8.48E-06

Table 23 Inhalation Exposure to Surface Soil by an Adolescent Trespasser - West Campus Former York Naval Ordnance Plant, York, PA

Noncarcinogen Exposure Concentration (mg/m³) =	Cs*EF*ED*ET AT _n *TF		
Carcinogen Exposure Concentration (ug/m²) =	Cs*ED*EF*ET* AT _c *		
Cs - Concentration in soil = EF - Exposure frequency = ED - Exposure duration = ET - Exposure time = AT _n - Averaging time - noncarcinogenic = TF - Transport factor = AT _c - Averaging time - carcinogenic =	mg/kg events/year years hours/event hours (mg/kg)/(mg/m³) hours	See below 24 12 4 105,120 Constituent-spi 613,200	Site-specific Reasonable assumption Reasonable assumption Reasonable assumption USEPA, 2009 eci PADEP Chpt. 250 USEPA. 2009

Mutagen Carcinogenic Exposure Concentration (ug/ $\mathring{\text{m}}$) = $\frac{\text{Cs*AED*EF*ET*(1000 ug/mg)}}{\text{AT}_c*\text{TF}}$

AED (years) = (ADAFc*EDc)+(ADAFa*EDa)

AED - Age-adjusted exposure duration = Reasonable assumption years ADAF₆₋₁₆ - Age factor for 6 -16 years = PADEP Chpt. 250 unitless 3 ADAF₁₆₋₁₇ - Age factor for 16 - 17 years = PADEP Chpt. 250 unitless 1 ED_c - Exposure duration for 6 - 16 years = years 11 Reasonable assumption ED_a - Exposure duration for 16 - 17 years = Reasonable assumption year

Constituent	Concentration in Soil mg/kg	Transport Factor	Noncarc. Exposure Concentration mg/m ³	Inhalation Reference Concentration mg/m ³	Hazard Index	Carc. Exposure Concentration ug/m³	Inhalation Unit Risk (ug/m³) ⁻¹	Cancer Risk
Inorganics								
Arsenic	6.62E+00	1.00E+10	7.25E-12	1.50E-05	4.84E-07	1.24E-09	4.30E-03	5.35E-12
Cadmium	7.38E+00	1.00E+10	8.09E-12	2.00E-05	4.05E-07	1.39E-09	1.80E-03	2.50E-12
Thallium	1.69E+00	1.00E+10	1.85E-12	NA	NA	3.17E-10	NA	NA
Semivolatiles								
Dimethylphthalate	6.60E-02	1.00E+10	7.23E-14	NA	NA	1.24E-11	NA	NA
Volatiles								
Tetrachloroethene	8.31E-01	1.31E+04	6.95E-07	4.00E-02	1.74E-05	1.19E-04	2.60E-07	3.10E-11
Mutagens								
Chromium	2.36E+02	1.00E+10	2.59E-10	1.00E-04	2.59E-06	1.26E-07	8.40E-02	1.06E-08
Trichloroethene	7.58E-01	1.31E+04	6.34E-07	2.30E-03	2.76E-04	3.08E-04	4.10E-06	1.26E-09

NA - Not available Total Hazard Index: 0.0003 Total Cancer Risk = 1.19E-08

Table 24
Calculations of Blood Lead Concentrations (PbBs) for Construction Workers on the East Campus
Former York Naval Ordnance Plant, York, PA

Mantal Ia	Description of Mariable	1126 -	Construction Worker -
Variable	Description of Variable	Units	East Campus
PbS	Soil lead concentration	ug/g or ppm	33.42
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per	0.4
		ug/day	
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	1.0
IR_{S}	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.330
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
Ws	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust	-	
$AF_{S,D}$	Absorption fraction (same for soil and dust)		0.12
$EF_{S,D}$	Exposure frequency (same for soil and dust)	days/yr	60
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.09
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.57
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.004%

Table 25
Calculations of Blood Lead Concentrations (PbBs) for Maintenance Workers on the West Campus
Former York Naval Ordnance Plant, York, PA

Variable	Description of Variable	Units	Maintenance Worker - West Campus
PbS	Soil lead concentration	ug/g or ppm	67.53
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	1.0
IR _s	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
Ws	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	180
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.08
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.56
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.004%

Table 26
Calculations of Blood Lead Concentrations (PbBs) for Adolescent Trespassers on the West Campus
Former York Naval Ordnance Plant, York, PA

			Adolescent Trespasser -
Variable	Description of Variable	Units	West Campus
PbS	Soil lead concentration	ug/g or ppm	67.53
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD _i	Geometric standard deviation PbB		1.8
PbB ₀	Baseline PbB	ug/dL	1.0
IR_S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
Ws	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	24
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.02
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.42
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.002%

Table 27
Calculations of Blood Lead Concentrations (PbBs) for Construction Workers on the West Campus
Former York Naval Ordnance Plant, York, PA

Variable	Description of Variable	Units	Construction Worker - West Campus
PbS	Soil lead concentration	ug/g or ppm	59.78
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9
BKSF	Biokinetic Slope Factor	ug/dL per ug/day	0.4
GSD_i	Geometric standard deviation PbB		1.8
PbB_0	Baseline PbB	ug/dL	1.0
IR _s	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.330
IR_{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day	
Ws	Weighting factor; fraction of IR _{S+D} ingested as outdoor soil		
K _{SD}	Mass fraction of soil in dust		
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	60
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365
PbB _{adult}	PbB of adult worker, geometric mean	ug/dL	1.16
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	ug/dL	2.74
PbB _t	Target PbB level of concern (e.g., 10 ug/dL)	ug/dL	10.0
$P(PbB_{fetal} > PbB_t)$	Probability that fetal PbB > PbB _t , assuming lognormal distribution	%	0.01%

Table 28
Summary of Toxicity Factors
Former York Naval Ordnance Plant, York, PA

Constituent	Mutagen	Oral Chronic Reference Dose mg/kg-day	Source ¹	GI Absorption Factor	Source ¹	Dermal Chronic Reference Dose mg/kg-day	Source ¹	Inhalation Reference Concentration mg/m³	Source ¹	Oral Cancer Slope Factor (mg/kg-day) ⁻¹	Source ¹	Dermal Cancer Slope Factor (mg/kg-day) ⁻¹	Source ¹	Inhalation Unit Risk (ug/m³)-1	Source ¹
Inorganics										(99)		(gg)		()	
Antimony		4.00E-04	IRIS	0.15	RSL	6.00E-05	R to R	NA		NA		NA		NA	
Arsenic		3.00E-04	IRIS	1	RSL	3.00E-04	R to R	1.50E-05	CalEPA	1.50E+00	IRIS	1.50E+00	R to R	4.30E-03	IRIS
Cadmium		5.00E-04	IRIS	0.05	RSL	2.50E-05	R to R	2.00E-05	CalEPA	NA		NA		1.80E-03	IRIS
Chromium*	X	3.00E-03	IRIS	0.025	RSL	7.50E-05	R to R	1.00E-04	IRIS	5.00E-01	NJDEP	2.00E+01	R to R	8.40E-02	IRISx7
Chromium - Hexavalent	X	3.00E-03	IRIS	0.025	RSL	7.50E-05	R to R	1.00E-04	IRIS	5.00E-01	NJDEP	2.00E+01	R to R	8.40E-02	IRISx7
Thallium		1.00E-05	PPRTVa	1	RSL	1.00E-05	R to R	NA		NA		NA		NA	
Zinc		3.00E-01	IRIS	1	RSL	3.00E-01	R to R	NA		NA		NA		NA	
Semivolatiles															
Benzo(a)pyrene	Χ	NA		1	RSL	NA		NA		7.30E+00	IRIS	7.30E+00	R to R	1.10E-03	CalEPA
Benzo(b)fluoranthene	X	NA		1	RSL	NA		NA		7.30E-01	CalEPA	7.30E-01	R to R	1.10E-04	CalEPA
Carbazole		NA		1	RSL	NA		NA		2.00E-02	PADEP	2.00E-02	R to R	NA	
Dimethylphthalate		NA		1	RSL	NA		NA		NA		NA		NA	
Hexachlorobenzene		8.00E-04	IRIS	1	RSL	8.00E-04	R to R	NA		1.60E+00	IRIS	1.60E+00	R to R	4.60E-04	IRIS
Pentachlorophenol		5.00E-03	IRIS	1	RSL	5.00E-03	R to R	NA		4.00E-01	IRIS	4.00E-01	R to R	5.10E-06	CalEPA
PCBs															
Aroclor 1254		2.00E-05	IRIS	1	RSL	2.00E-05	R to R	NA		2.00E+00	IRIS PCB Up	2.00E+00	R to R	5.70E-04	IRIS high
Volatiles															
1,2-Dichloroethane		6.00E-03	PPRTVa	1	RSL	6.00E-03	R to R	7.00E-03	PPRTV	9.10E-02	IRIS	9.10E-02	R to R	2.60E-05	IRIS
Tetrachloroethene		6.00E-03	IRIS	1	RSL	6.00E-03	R to R	4.00E-02	IRIS	2.10E-03	IRIS	2.10E-03	R to R	2.60E-07	IRIS
Trichloroethene	Χ	5.00E-04	IRIS	1	RSL	5.00E-04	R to R	2.30E-03	IRIS	4.60E-02	IRIS	4.60E-02	R to R	4.10E-06	IRIS
Vinyl Chloride		3.00E-03	IRIS	1	RSL	3.00E-03	R to R	1.00E-01	IRIS	7.20E-01	IRIS	7.20E-01	R to R	4.40E-06	IRIS

Toxicity values as presented were obtained from the November 2011 USEPA RSL tables (with the exception of carbazole). Sources presented are as listed on the November 2011 RSL tables.

NA - Not Available

PPRTVa - USEPA Provisional Peer Review Toxicity Appendix Value

IRISx7 - USEPA's IRIS published value for hexavalent chromium multiplied by a factor of 7 as published in USEPA's RSL tables, June 2011.

PADEP - PADEP Toxicity Value Database located at http://www.depreportingsvcs.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/CPP/Toxicity

IRIS PCB Up - Upper bound value for high risk mixtures of PCBs as published in USEPA's IRIS

IRIS high - IUR converted from the high risk oral slope factor for PCB mixtures as published in USEPA's IRIS

PPRTV - USEPA Provisional Peer Review Toxicity Value

ATSDR - Agency for Toxic Substances and Disease Registry

IRIS - USEPA Integrated Risk Information System

RSL - USEPA Regional Screening Level Tables, November, 2011

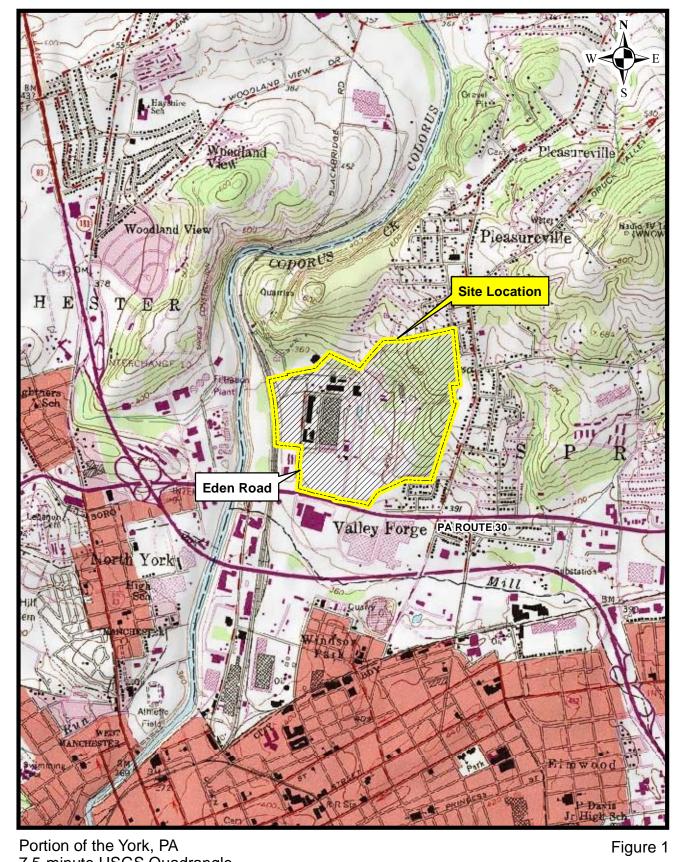
R to R - Route to route extrapolation using methodology from USEPA, 2004.

CalEPA - California Environmental Protection Agency published value

^{*} For purposes of toxicity, chromium was assumed to be hexavalent chromium.

NJDEP - New Jersey Department of Environmental Protection published value

Table 29 Summary of Hazard and Risk Calculations Former York Naval Ordnance Plant, York, PA


East Campus

Receptor/Pathway	Hazard Index	Cancer Risk	Table #
Maintenance Worker			
Dermal exposure to surface soil	0.00	0.00	6
Oral exposure to surface soil	0.0013	5.74E-09	7
Inhalation exposure to surface soil	0.0068	2.53E-08	8
Total Maintenance Worker:	0.0081	3.11E-08	
Construction Worker			
Dermal exposure to surface and subsurface soil	0.0014	8.87E-09	9
Oral exposure to surface and subsurface soil	0.076	4.51E-07	10
Inhalation exposure to surface and subsurface soil	0.0010	8.69E-10	11
Total Construction Worker:	0.078	4.60E-07	
Adolescent Trespasser			
Dermal exposure to surface soil	0.000	0.00E+00	12
Oral exposure to surface soil	0.00026	5.67E-10	13
Inhalation exposure to surface soil	0.00045	8.10E-10	14
Total Adolescent Trespasser:	0.0007	1.38E-09	

West Campus

Receptor/Pathway	Hazard Index	Cancer Risk	Table #
Maintenance Worker			
Dermal exposure to surface soil	0.001	9.89E-08	15
•	*****		
Oral exposure to surface soil	0.10	1.61E-05	16
Inhalation exposure to surface soil	0.004	1.32E-07	17
Total Maintenance Worker:	0.11	1.63E-05	
Construction Worker			
Dermal exposure to surface and subsurface soil	0.15	1.86E-07	18
Oral exposure to surface and subsurface soil	0.68	1.94E-06	19
Inhalation exposure to surface and subsurface soil	0.020	4.40E-09	20
Total Construction Worker:	0.86	2.13E-06	
Adelescent Treenescen			
Adolescent Trespasser	0.00040	2 225 00	24
Dermal exposure to surface soil	0.00042	2.23E-08	21
Oral exposure to surface soil	0.041	8.48E-06	22
Inhalation exposure to surface soil	0.0003	1.19E-08	23
Total Adolescent Trespasser:	0.04	8.52E-06	

Combined Exposures: East and West Campus	Hazard Index	Cancer Risk
Maintenance Worker	0.11	1.64E-05
Construction Worker	0.94	2.59E-06
Adolescent Site Visitor	0.04	8.52E-06

7.5-minute USGS Quadrangle

Former York Naval Ordnance Plant

1425 Eden Road, York, PA 17402

Site Location Map

GROUNDWATER SCIENCES CORPORATION

K:\10000\10012\Projects\2012 Soils Report\Fig1_SiteLoc.mxd • 3/30/2011

Scale (feet) 500 1,000 2,000

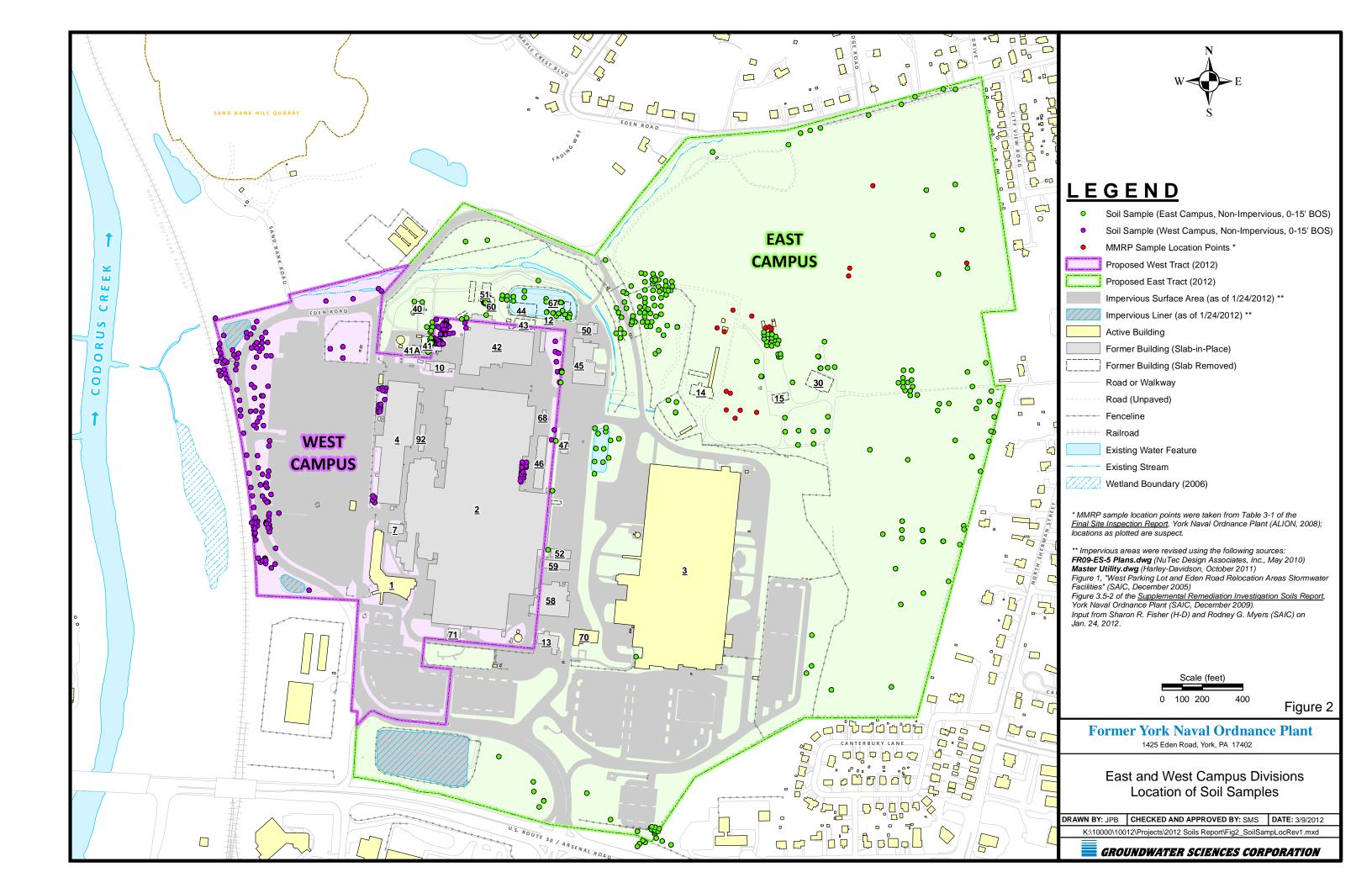
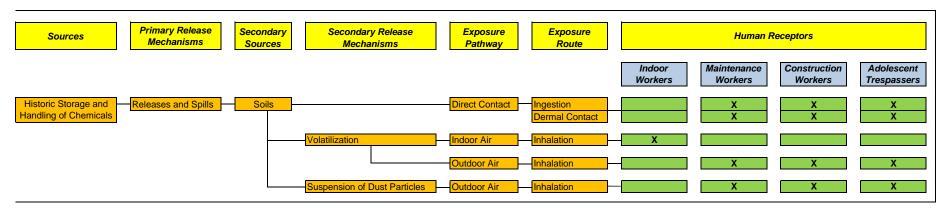
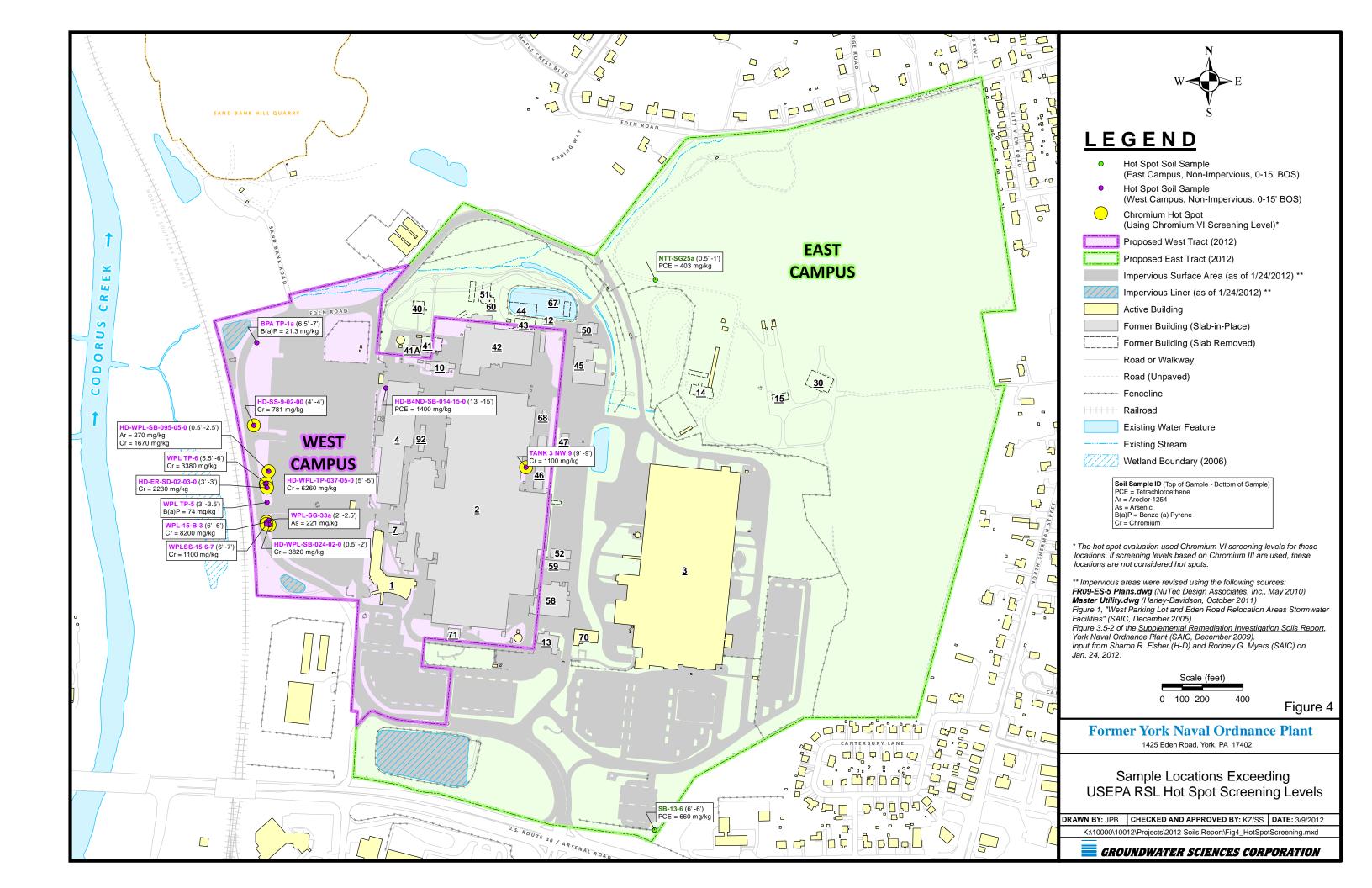
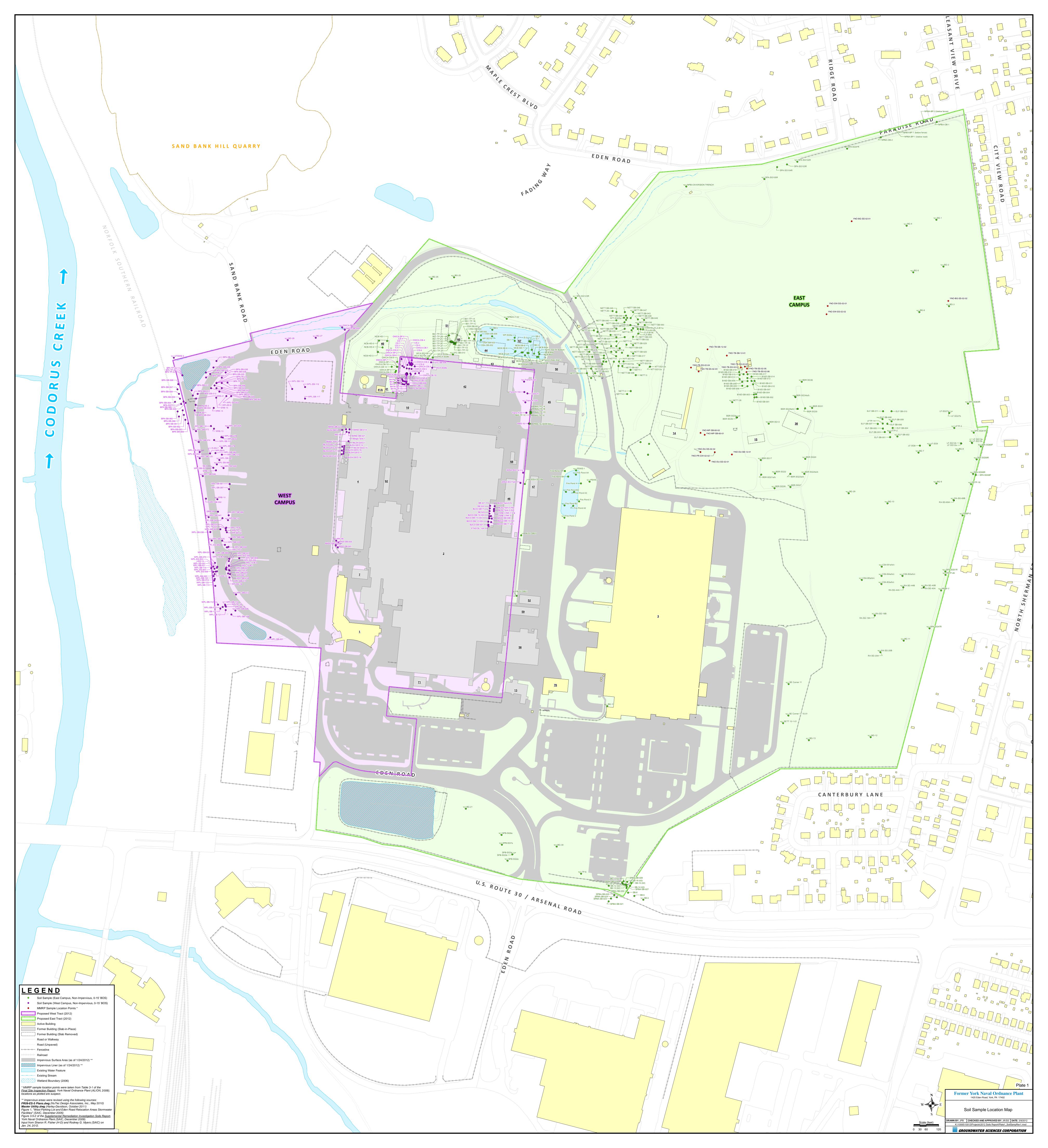





Figure 3: Conceptual Site Model - Soil Exposure Pathway Analysis Former York Naval Ordnance Plant, York, PA

Complete Pathway to be evaluated in the Human Health Risk Assessment

Appendix A Surrogate Reporting Limits for Select COPCs in Soils Former York Naval Ordnance Plant, York, PA

East Campus Soils 0-2 feet bgs

COPC Surrogate Reporting Limit (mg/kg)

Tetrachloroethene 0.004

East Campus Soils 0-15 feet bgs	
COPC	Surrogate Reporting Limit (mg/kg)
1,2-Dichloroethane	0.53
Arsenic	1.2
Hexavalent Chromium	11.9
Thallium	11.1
Tetrachloroethene	0.53
Vinyl Chloride	0.35

West Campus 0-2 feet bgs

West Campus 0-2 feet bgs	
COPC	Surrogate Reporting Limit (mg/kg)
Arsenic	2
Cadmium	0.69
Dimethylphthalate	2
Tetrachloroethene	0.57
Thallium	6.3
Trichloroethene	0.57

West Campus 0-15 feet bgs

West Campus 0-15 feet bgs	
COPC	Surrogate Reporting Limit (mg/kg)
Antimony	7.2
Arsenic	2
Cadmium	3.2
Thallium	6.5
Aroclor-1254	0.89
Benzo(a)pyrene	1.3
Dimethylphthalate	2
Hexachlorobenzene	2.4
Tetrachloroethene	0.2
Trichloroethene	0.2

Tetrachloroethene

	General Sta	atistics	
Number of Valid Data	137	Number of Detected Data	20
Number of Distinct Detected Data	16	Number of Non-Detect Data	117
		Percent Non-Detects	85.40%
Raw Statistics	0.0040	Log-transformed Statistics	0.705
Minimum Detected Maximum Detected	0.0012 403	Minimum Detected Maximum Detected	-6.725 5.999
Mean of Detected	20.18	Mean of Detected	-3.838
SD of Detected	90.11	SD of Detected	-3.636 2.617
Minimum Non-Detect	0.0022	Minimum Non-Detect	-6.119
Maximum Non-Detect	2.6	Maximum Non-Detect	0.956
	2.0		0.000
Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	136
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.27%
	UCL Stati	istics	
Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values Or	nlv
Shapiro Wilk Test Statistic	0.236	Shapiro Wilk Test Statistic	0.679
5% Shapiro Wilk Critical Value	0.905	5% Shapiro Wilk Critical Value	0.905
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method	0.050	DL/2 Substitution Method	5 500
Mean	2.959	Mean	-5.593
SD OFFIC DL/2 (A) LIGH	34.43	SD 05% U Stat (DL/2) USL	1.466
95% DL/2 (t) UCL	7.831	95% H-Stat (DL/2) UCL	0.0152
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-7.094
0.1 ,		SD in Log Scale	2.138
		Mean in Original Scale	2.946
		SD in Original Scale	34.43
		95% t UCL	7.818
		95% Percentile Bootstrap UCL	8.829
		95% BCA Bootstrap UCL	11.77
		95% H-UCL	0.0153
Gamma Distribution Test with Detected Values On	lv	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.132	Data do not follow a Discernable Distribution (0.05)
Theta Star	152.6		
nu star	5.29		
A D T 1 CO 11 II	5.00	N	
A-D Test Statistic	5.82	Nonparametric Statistics	
5% A-D Critical Value	0.922	Kaplan-Meier (KM) Method	2.047
K-S Test Statistic 5% K-S Critical Value	0.922 0.218	Mean SD	2.947 34.3
Data not Gamma Distributed at 5% Significance Le		SE of Mean	34.3
Data not Gamma Distributed at 5 % Significance Le	VEI	95% KM (t) UCL	3.007 7.927
Assuming Gamma Distribution		95% KM (z) UCL	7.893
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	7.818
Minimum	0.000001	95% KM (bootstrap t) UCL	9894
Maximum	403	95% KM (BCA) UCL	8.83
Mean	2.945	95% KM (Percentile Bootstrap) UCL	8.83
Median	0.000001	95% KM (Chebyshev) UCL	16.05
SD	34.43	97.5% KM (Chebyshev) UCL	21.73
k star	0.0671	99% KM (Chebyshev) UCL	32.87
Theta star	43.89		
Nu star	18.39	Potential UCLs to Use	
AppChi2	9.67	97.5% KM (Chebyshev) UCL	21.73
95% Gamma Approximate UCL	5.6		
95% Adjusted Gamma LICI	5 639		

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

5.639

1,2-Dichloroethane

	General Statistics		
Number of Valid Data	310	Number of Detected Data	2
Number of Distinct Detected Data	2	Number of Non-Detect Data	308
		Percent Non-Detects	99.35%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.005	Minimum Detected	-5.298
Maximum Detected	4.1	Maximum Detected	1.411
Mean of Detected	2.053	Mean of Detected	-1.944
SD of Detected	2.896	SD of Detected	4.744
Minimum Non-Detect	0.0019	Minimum Non-Detect	-6.266
Maximum Non-Detect	2.6	Maximum Non-Detect	0.956
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	309
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.68%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates. The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods.

However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

Name I Principal Control of the Cont	UCL St		
Normal Distribution Test with Detected Values Only	N/A	Lognormal Distribution Test with Detected Values Only	N/A
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	N/A N/A	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	N/A N/A
Data not Normal at 5% Significance Level	IN/A	Data not Lognormal at 5% Significance Level	IN/A
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.0379	Mean	-5.548
SD	0.25	SD	1.372
95% DL/2 (t) UCL	0.0614	95% H-Stat (DL/2) UCL	0.0121
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	N/A
		SD in Log Scale	N/A
		Mean in Original Scale	N/A
		SD in Original Scale	N/A
		95% t UCL	N/A
		95% Percentile Bootstrap UCL	N/A
		95% BCA Bootstrap UCL	N/A
		95% H-UCL	N/A
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	N/A	Data do not follow a Discernable Distribution (0.05)	
Theta Star	N/A		
nu star	N/A		
A-D Test Statistic	N/A	Nonparametric Statistics	
5% A-D Critical Value	N/A	Kaplan-Meier (KM) Method	
K-S Test Statistic	N/A	Mean	0.0182
5% K-S Critical Value	N/A	SD	0.232
Data not Gamma Distributed at 5% Significance Level	l	SE of Mean	0.0187
		95% KM (t) UCL	0.049
Assuming Gamma Distribution		()	0.0489
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.662
Minimum	N/A	95% KM (bootstrap t) UCL	N/A
Maximum	N/A	95% KM (BCA) UCL	4.1
Mean	N/A	95% KM (Percentile Bootstrap) UCL	N/A
Median	N/A	95% KM (Chebyshev) UCL	0.0995
SD	N/A	97.5% KM (Chebyshev) UCL	0.135
k star	N/A	99% KM (Chebyshev) UCL	0.204
Theta star	N/A	Particular III partic	
Nu star	N/A	Potential UCLs to Use	0.405
AppChi2	N/A	97.5% KM (Chebyshev) UCL	0.135
95% Gamma Approximate UCL	N/A		
95% Adjusted Gamma UCL	N/A		
: DL/2 is not a recommended method.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Chromium

General Statistics

Number of Valid Observations 219 Number of Distinct Observations 147

Raw Statistics

Minimum 2.4 Maximum 507 Mean 30 12 Median 12 7 SD 63.48

Std. Error of Mean 4.29 Coefficient of Variation 2.108

Skewness 4.701

Log-transformed Statistics

Minimum of Log Data 0.875 Maximum of Log Data 6.229 Mean of log Data 2.736 SD of log Data 0.899

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.372 Lilliefors Critical Value 0.0599

Data not Normal at 5% Significance Level

Lognormal Distribution Test

Lilliefors Test Statistic 0.19 Lilliefors Critical Value 0.0599 Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 26.22 95% Chebyshev (MVUE) UCL 30.24 97.5% Chebyshev (MVUE) UCL 33.35 99% Chebyshev (MVUE) UCL 39.45

Assuming Normal Distribution 95% Student's-t UCL 37.2

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 38.63 95% Modified-t UCL (Johnson-1978) 37.43

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Gamma Distribution Test

k star (bias corrected) 0.868 Theta Star 34.71 MLE of Mean 30.12 MLE of Standard Deviation 32.33 nu star 380

Approximate Chi Square Value (.05) 335.9 Adjusted Level of Significance 0.0489 Adjusted Chi Square Value 335.6

Anderson-Darling Test Statistic 27.9 Anderson-Darling 5% Critical Value 0.79 Kolmogorov-Smirnov Test Statistic 0.288 Kolmogorov-Smirnov 5% Critical Value 0.0636 Data not Gamma Distributed at 5% Significance Level

Nonparametric Statistics

95% CLT UCL 37.17 95% Jackknife UCL 37.2 95% Standard Bootstrap UCL 37.37 95% Bootstrap-t UCL 39.86 95% Hall's Bootstrap UCL 38.81 95% Percentile Bootstrap UCL 37.49 95% BCA Bootstrap UCL 39.06 95% Chebyshev(Mean, Sd) UCL 48.82 97.5% Chebyshev(Mean, Sd) UCL 56.91 99% Chebyshev(Mean, Sd) UCL 72.8

Assuming Gamma Distribution

95% Approximate Gamma UCL 34.08 95% Adjusted Gamma UCL 34.11

Potential UCL to Use

Use 95% Chebyshev (Mean, Sd) UCL 48.82

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Hexavalent Chromium

	Canaral St	atiation	
Number of Valid Data	General St 134	Number of Detected Data	33
Number of Distinct Detected Data	29	Number of Non-Detect Data	101
Number of Distinct Detected Data	29	Percent Non-Detects	75.37%
		r Groom Non Beleets	73.5770
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.16	Minimum Detected	-1.833
Maximum Detected	254	Maximum Detected	5.537
Mean of Detected	16.74	Mean of Detected	0.00871
SD of Detected	52.39	SD of Detected	1.894
Minimum Non-Detect	0.43	Minimum Non-Detect	-0.844
Maximum Non-Detect	11.9	Maximum Non-Detect	2.477
Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	130
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	4
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	97.01%
•			
	UCL Stat		
Normal Distribution Test with Detected Values On	•	Lognormal Distribution Test with Detected Values O	
Shapiro Wilk Test Statistic	0.369	Shapiro Wilk Test Statistic	0.729
5% Shapiro Wilk Critical Value	0.931	5% Shapiro Wilk Critical Value	0.931
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	6.716	Mean	0.354
SD	26.44	SD	1.632
95% DL/2 (t) UCL	10.5	95% H-Stat (DL/2) UCL	8.069
0070 BB2 (t) 00E	10.0	55% 11 Stat (BE/2) 552	0.000
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-1.006
, -		SD in Log Scale	1.45
		Mean in Original Scale	4.485
		SD in Original Scale	26.65
		95% t UCL	8.298
		95% Percentile Bootstrap UCL	8.559
		95% BCA Bootstrap UCL	11.17
		95% H-UCL	1.459
Gamma Distribution Test with Detected Values Or	-	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.25	Data do not follow a Discernable Distribution (0.05)
Theta Star	67.02		
nu star	16.48		
A-D Test Statistic	6.865	Nonparametric Statistics	
5% A-D Critical Value	0.876	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.876	Mean	4.407
5% K-S Critical Value	0.168	SD	26.55
		SE of Mean	2.33
Data not Gamma Distributed at 5% Significance Le	vei		
Assuming Commo Distribution		95% KM (t) UCL	8.266
Assuming Gamma Distribution		95% KM (z) UCL	8.239
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	8.221
Minimum	0.000001	95% KM (bootstrap t) UCL	16.21
Maximum	254	95% KM (BCA) UCL	8.882
Mean	6.579	95% KM (Percentile Bootstrap) UCL	8.853
Median	0.000001	95% KM (Chebyshev) UCL	14.56
SD	27.71	97.5% KM (Chebyshev) UCL	18.96
k star	0.083	99% KM (Chebyshev) UCL	27.59
Theta star	79.25	<u> </u>	
Nu star	22.25	Potential UCLs to Use	
AppChi2	12.52	95% KM (Chebyshev) UCL	14.56
95% Gamma Approximate UCL	11.69		
95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.	11.76		
NOTE. DELLA 13 HOL A LECOHIHIEHUEU HIEHHOU.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Tetrachloroethene

	General S	Statistics	
Number of Valid Data	435	Number of Detected Data	46
Number of Distinct Detected Data	39	Number of Non-Detect Data	389
Number of Distinct Detected Data	33	Percent Non-Detects	89.43%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.00024	Minimum Detected	-8.335
Maximum Detected	660	Maximum Detected	6.492
Mean of Detected	23.28	Mean of Detected	-4.29
SD of Detected	112.9	SD of Detected	2.974
Minimum Non-Detect	0.0019	Minimum Non-Detect	-6.266
Maximum Non-Detect	2.6	Maximum Non-Detect	0.956
Waxinan Non Bolost	2.0	Waxiiidiii 14011 Botoot	0.000
Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	432
For all methods (except KM, DL/2, and ROS Methods),	laca	Number treated as Detected	3
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.31%
Observations < Eargest ND are treated as NDs		Single DE Non Detect i Greenlage	33.3170
	UCL St		
Normal Distribution Test with Detected Values On	-	Lognormal Distribution Test with Detected Values Or	nly
Shapiro Wilk Test Statistic	0.227	Shapiro Wilk Test Statistic	0.804
5% Shapiro Wilk Critical Value	0.945	5% Shapiro Wilk Critical Value	0.945
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	2.545	Mean	-4.356
SD	37.03	SD	2.28
95% DL/2 (t) UCL	5.472	95% H-Stat (DL/2) UCL	0.25
93 % DE/2 (t) OCE	3.472	93 /6 11-3tat (DE)2) OCE	0.23
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-7.197
yiolao a noganio moan		SD in Log Scale	2.233
		Mean in Original Scale	2.464
		SD in Original Scale	37.04
		95% t UCL	5.392
			5.499
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	7.017
		95% H-UCL	0.017
		55%11 552	0.010
Gamma Distribution Test with Detected Values Or	-	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.116	Data do not follow a Discernable Distribution (0.05))
Theta Star	201.5		
nu star	10.63		
A-D Test Statistic	11.67	Nonparametric Statistics	
5% A-D Critical Value	0.965	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.965	Mean	2.464
5% K-S Critical Value	0.148	SD	37
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	1.793
		95% KM (t) UCL	5.42
Assuming Gamma Distribution		95% KM (z) UCL	5.414
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	5.391
Minimum	0.000001	95% KM (bootstrap t) UCL	2710
Maximum	660	95% KM (BCA) UCL	5.498
Mean	3.575	95% KM (Percentile Bootstrap) UCL	5.515
Median	0.000001	95% KM (Chebyshev) UCL	10.28
SD	37.62	97.5% KM (Chebyshev) UCL	13.66
k star	0.0648	99% KM (Chebyshev) UCL	20.31
Theta star	55.21	(,,	
Nu star	56.34	Potential UCLs to Use	
AppChi2	40.08	97.5% KM (Chebyshev) UCL	13.66
95% Gamma Approximate UCL	5.025		
95% Adjusted Gamma UCL	5.03		
Note: DL/2 is not a recommended method.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Thallium

	General Statistic	c	
Number of Valid Data	206	Number of Detected Data	33
Number of Distinct Detected Data	21	Number of Non-Detect Data	173
		Percent Non-Detects	83.98%
Day Statistics		Lag transformed Statistics	
Raw Statistics Minimum Detected	0.13	Log-transformed Statistics Minimum Detected	-2.04
Maximum Detected	20	Maximum Detected	2.996
Mean of Detected	0.934	Mean of Detected	-1.141
SD of Detected	3.431	SD of Detected	0.94
Minimum Non-Detect	0.341	Minimum Non-Detect	-1.076
Maximum Non-Detect	28.7	Maximum Non-Detect	3.357
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	206
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	0
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
	UCL Statistics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values O	nly
Shapiro Wilk Test Statistic	0.224	Shapiro Wilk Test Statistic	0.73
5% Shapiro Wilk Critical Value	0.931	5% Shapiro Wilk Critical Value	0.931
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	2.68	Mean	0.164
SD	3.232	SD	1.368
95% DL/2 (t) UCL	3.052	95% H-Stat (DL/2) UCL	3.808
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-1.351
		SD in Log Scale	0.629
		Mean in Original Scale	0.392
		SD in Original Scale	1.385
		95% t UCL	0.551
		95% Percentile Bootstrap UCL	0.584
		95% BCA Bootstrap UCL 95% H-UCL	0.765 0.343
Gamma Distribution Test with Detected Values Onl	•	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.547	Data do not follow a Discernable Distribution (0.05)
Theta Star	1.708		
nu star	36.08		
A-D Test Statistic	6.244	Nonparametric Statistics	
5% A-D Critical Value	0.804	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.804	Mean	0.375
5% K-S Critical Value	0.161	SD CF of Many	1.389
Data not Gamma Distributed at 5% Significance Lev	rei	SE of Mean	0.101
Accoming Commo Distribution		95% KM (t) UCL	0.542 0.541
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	0.541
Minimum	0.000001	95% KM (bootstrap t) UCL	0.984
Maximum	20	95% KM (BCA) UCL	0.601
Mean	0.67	95% KM (Percentile Bootstrap) UCL	0.565
Median	0.285	95% KM (Chebyshev) UCL	0.814
SD	1.527	97.5% KM (Chebyshev) UCL	1.005
k star	0.186	99% KM (Chebyshev) UCL	1.378
Theta star	3.597	(= :,, = :,, = ==	
Nu star	76.75	Potential UCLs to Use	
AppChi2	57.57	95% KM (t) UCL	0.542
95% Gamma Approximate UCL	0.893	95% KM (% Bootstrap) UCL	0.565
95% Adjusted Gamma UCL	0.895		
Note: DL /2 is not a recommended method			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Vinyl Chloride

	General S	tatistics	
Number of Valid Data	331	Number of Detected Data	29
Number of Distinct Detected Data	21	Number of Non-Detect Data	302
		Percent Non-Detects	91.24%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0015	Minimum Detected	-6.502
Maximum Detected	2.5	Maximum Detected	0.916
Mean of Detected	0.351	Mean of Detected	-3.329
SD of Detected	0.671	SD of Detected	2.37
Minimum Non-Detect	0.0019	Minimum Non-Detect	-6.266
Maximum Non-Detect	2.6	Maximum Non-Detect	0.956
Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	331
For all methods (except KM, DL/2, and ROS Methods),	laca	Number treated as Detected	0
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	100.00%
0200174.10.10 1 24.900112 4.0 1104.04 401120		Gingle 22 Non 20toot 1 droomage	100.0070
	UCL Sta	tistics	
Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values O	nly
Shapiro Wilk Test Statistic	0.592	Shapiro Wilk Test Statistic	0.906
5% Shapiro Wilk Critical Value	0.926	5% Shapiro Wilk Critical Value	0.926
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.0552	Mean	-5.199
SD	0.233	SD	1.615
95% DL/2 (t) UCL	0.0763	95% H-Stat (DL/2) UCL	0.0259
()			
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-6.265
		SD in Log Scale	1.796
		Mean in Original Scale	0.034
		SD in Original Scale	0.219
		95% t UCL	0.0538
		95% Percentile Bootstrap UCL	0.0546
		95% BCA Bootstrap UCL 95% H-UCL	0.0624 0.0127
		937611F0GE	0.0127
Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.294	Data do not follow a Discernable Distribution (0.05	5)
Theta Star	1.193		
nu star	17.04		
A-D Test Statistic	1.988	Nonparametric Statistics	
5% A-D Critical Value	0.856	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.856	Mean	0.0333
5% K-S Critical Value	0.177	SD	0.219
Data not Gamma Distributed at 5% Significance Le		SE of Mean	0.0123
•		95% KM (t) UCL	0.0536
Assuming Gamma Distribution		95% KM (z) UCL	0.0535
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.0533
Minimum	0.000001	95% KM (bootstrap t) UCL	0.0672
Maximum	2.5	95% KM (BCA) UCL	0.054
Mean	0.0554	95% KM (Percentile Bootstrap) UCL	0.054
Median	0.000001	95% KM (Chebyshev) UCL	0.0868
SD	0.227	97.5% KM (Chebyshev) UCL	0.11
k star	0.101	99% KM (Chebyshev) UCL	0.155
Theta star	0.546	Petential HCL a to Has	
Nu star AppChi2	67.15 49.29	Potential UCLs to Use 97.5% KM (Chebyshev) UCL	0.11
95% Gamma Approximate UCL	0.0755	57.5% KW (Chebyshev) UCL	0.11
95% Adjusted Gamma UCL	0.0756		
Note: DI /2 is not a recommended method	0.0730		

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Arsenic

	General Statistics		
Number of Valid Data	218	Number of Detected Data	217
Number of Distinct Detected Data	148	Number of Non-Detect Data	1
		Percent Non-Detects	0.46%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.37	Minimum Detected	-0.994
Maximum Detected	29.1	Maximum Detected	3.371
Mean of Detected	5.488	Mean of Detected	1.471
SD of Detected	4.302	SD of Detected	0.688
Minimum Non-Detect	1.2	Minimum Non-Detect	0.182
Maximum Non-Detect	1.2	Maximum Non-Detect	0.182
	UCL Statistics		
Normal Distribution Test with Detected Values On		ognormal Distribution Test with Detected Values On	nly
Lilliefors Test Statistic	0.2	Lilliefors Test Statistic	0.0744
5% Lilliefors Critical Value	0.0601	5% Lilliefors Critical Value	0.0601
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	5.466	Mean	1.462
SD	4.305	SD	0.699
95% DL/2 (t) UCL	5.948	95% H-Stat (DL/2) UCL	6.034
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	5.373	Mean in Log Scale	1.464
SD 95% MLE (t) UCL	4.435	SD in Log Scale Mean in Original Scale	0.693
95% MLE (Tiku) UCL	5.869 5.846	SD in Original Scale	5.468 4.303
95 % WILL (TIKU) OCL	3.040	95% t UCL	5.95
		95% Percentile Bootstrap UCL	5.952
		95% BCA Bootstrap UCL	6.009
		95% H UCL	6.017
Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	2.281	Data do not follow a Discernable Distribution (0.05))
Theta Star	2.406		
nu star	989.9		
A-D Test Statistic	2.759	Nonparametric Statistics	
5% A-D Critical Value	0.764	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.764	Mean	5.467
5% K-S Critical Value	0.0624	SD SE of Mana	4.294
Data not Gamma Distributed at 5% Significance Lev	vei	SE of Mean 95% KM (t) UCL	0.292 5.949
Assuming Gamma Distribution		95% KM (t) UCL	5.949
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	5.949
Minimum	0.000001	95% KM (bootstrap t) UCL	5.991
Maximum	29.1	95% KM (BCA) UCL	5.933
Mean	5.463	95% KM (Percentile Bootstrap) UCL	5.957
Median	4.48	95% KM (Chebyshev) UCL	6.738
SD	4.309	97.5% KM (Chebyshev) UCL	7.288
k star	1.808	99% KM (Chebyshev) UCL	8.368
Theta star	3.021	Detection 1901 - 12 Hz	
Nu star AppChi2	788.5 724.3	Potential UCLs to Use 95% KM (BCA) UCL	5.933
APPONIZ 95% Gamma Approximate UCL	5.947	93% NIVI (BCA) UCL	5.933
95% Adjusted Gamma UCL	5.951		
DI /0 :- not a recommended mothed			

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Lead

	Canaral Statisti		
Number of Valid Data	General Statisti 219	Number of Detected Data	211
Number of Distinct Detected Data	169	Number of Non-Detect Data	8
		Percent Non-Detects	3.65%
Raw Statistics Minimum Detected	1	Log-transformed Statistics Minimum Detected	0
Maximum Detected	1580	Maximum Detected	7.365
Mean of Detected	34.53	Mean of Detected	2.646
SD of Detected	118	SD of Detected	1.063
Minimum Non-Detect	3.3	Minimum Non-Detect	1.194
Maximum Non-Detect	15	Maximum Non-Detect	2.708
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	141
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	78
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	64.38%
	UCL Statistics	3	
Normal Distribution Test with Detected Values Only	y	Lognormal Distribution Test with Detected Values O	nly
Lilliefors Test Statistic	0.388	Lilliefors Test Statistic	0.127
5% Lilliefors Critical Value	0.061	5% Lilliefors Critical Value	0.061
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution DL/2 Substitution Method		Assuming Lognormal Distribution DL/2 Substitution Method	
Mean	33.39	Mean	2.585
SD	116	SD	1.096
95% DL/2 (t) UCL	46.33	95% H-Stat (DL/2) UCL	28.55
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	2.589
		SD in Log Scale	1.092
		Mean in Original Scale SD in Original Scale	33.41 116
		95% t UCL	46.35
		95% Percentile Bootstrap UCL	48.17
		95% BCA Bootstrap UCL	57.13
		95% H-UCL	28.51
Common Distribution Took with Detected Volume Only		Data Distribution Test with Detected Values Only	
Gamma Distribution Test with Detected Values Only k star (bias corrected)	y 0.671	Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05	`
Theta Star	51.44	Data do not follow a Discernable Distribution (0.03	,
nu star	283.3		
A-D Test Statistic	19.4	Nonparametric Statistics	
5% A-D Critical Value K-S Test Statistic	0.803 0.803	Kaplan-Meier (KM) Method Mean	33.42
5% K-S Critical Value	0.0652	SD SD	115.7
Data not Gamma Distributed at 5% Significance Levi		SE of Mean	7.836
		95% KM (t) UCL	46.37
Assuming Gamma Distribution		95% KM (z) UCL	46.31
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	46.37
Minimum	0.000001	95% KM (bootstrap t) UCL	63.99
Maximum	1580	95% KM (BCA) UCL	49.74
Mean	33.27	95% KM (Percentile Bootstrap) UCL	47.77
Median	10.5	95% KM (Chebyshev) UCL	67.58
SD k star	116 0.44	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	82.36 111.4
Theta star	75.55	33 /6 KWI (Chebyshev) OCL	111.4
Nu star	192.9	Potential UCLs to Use	
AppChi2	161.8	95% KM (Chebyshev) UCL	67.58
95% Gamma Approximate UCL	39.67		
95% Adjusted Gamma UCL	39.72		
Note: DL/2 is not a recommended method			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Arsenic

	General Statistic	e	
Number of Valid Data	107	Number of Detected Data	106
Number of Distinct Detected Data	58	Number of Non-Detect Data	1
		Percent Non-Detects	0.93%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	1.3	Minimum Detected	0.262
Maximum Detected	29	Maximum Detected	3.367
Mean of Detected	5.95	Mean of Detected	1.632
SD of Detected	4.264	SD of Detected	0.522
Minimum Non-Detect	2	Minimum Non-Detect	0.693
Maximum Non-Detect	2	Maximum Non-Detect	0.693
	UCL Statistics		
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Onl	v
Lilliefors Test Statistic	0.271	Lilliefors Test Statistic	0.143
5% Lilliefors Critical Value	0.0861	5% Lilliefors Critical Value	0.0861
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	5.904	Mean	1.617
SD	4.271	SD	0.543
95% DL/2 (t) UCL	6.589	95% H-Stat (DL/2) UCL	6.436
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	5.775	Mean in Log Scale	1.623
SD	4.44	SD in Log Scale	0.528
95% MLE (t) UCL	6.487	Mean in Original Scale SD in Original Scale	5.912 4.262
95% MLE (Tiku) UCL	6.455	95% t UCL	4.262 6.596
		95% Percentile Bootstrap UCL	6.603
		95% BCA Bootstrap UCL	6.767
		95% H UCL	6.404
Gamma Distribution Test with Detected Values Only	/	Data Distribution Test with Detected Values Only	
k star (bias corrected)	3.369	Data do not follow a Discernable Distribution (0.05)	
Theta Star	1.766		
nu star	714.1		
A-D Test Statistic	4.767	Nonparametric Statistics	
5% A-D Critical Value	0.758	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.758	Mean	5.909
5% K-S Critical Value	0.0884	SD	4.245
Data not Gamma Distributed at 5% Significance Leve	el .	SE of Mean	0.412
Accuming Commo Dietribution		95% KM (t) UCL	6.593 6.587
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (z) UCL 95% KM (jackknife) UCL	6.593
Minimum	0.000001	95% KM (bootstrap t) UCL	6.842
Maximum	29	95% KM (BCA) UCL	6.619
Mean	5.894	95% KM (Percentile Bootstrap) UCL	6.648
Median	5.1	95% KM (Chebyshev) UCL	7.706
SD	4.283	97.5% KM (Chebyshev) UCL	8.484
k star	1.849	99% KM (Chebyshev) UCL	10.01
Theta star	3.188		
Nu star	395.6	Potential UCLs to Use	
AppChi2	350.5	95% KM (BCA) UCL	6.619
95% Gamma Approximate UCL	6.653		<u></u>
95% Adjusted Gamma UCL	6.664		

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Cadmium

	General Sta	atletice	
Number of Valid Data	107	Number of Detected Data	77
Number of Distinct Detected Data	63	Number of Non-Detect Data	30
Number of distinct detected data	03	Percent Non-Detects	28.04%
		i elcent non-betects	20.0470
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.05	Minimum Detected	-2.996
Maximum Detected	112	Maximum Detected	4.718
Mean of Detected	3.54	Mean of Detected	-0.224
SD of Detected	13.26	SD of Detected	1.485
Minimum Non-Detect	0.047	Minimum Non-Detect	-3.058
Maximum Non-Detect	1	Maximum Non-Detect	0.000
meximum ron 20000	•	maximum non Botost	· ·
Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	78
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	29
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	72.90%
•			
	UCL Statis	stics	
Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values On	lly
Lilliefors Test Statistic	0.396	Lilliefors Test Statistic	0.102
5% Lilliefors Critical Value	0.101	5% Lilliefors Critical Value	0.101
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	2.617	Mean	-0.659
SD	11.33	SD	1.55
95% DL/2 (t) UCL	4.434	95% H-Stat (DL/2) UCL	2.612
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	0.040
MLE yields a negative mean		Mean in Log Scale	-0.819
		SD in Log Scale	1.665
		Mean in Original Scale	2.588
		SD in Original Scale	11.33
		95% t UCL	4.406
		95% Percentile Bootstrap UCL	4.549
		95% BCA Bootstrap UCL	5.943
		95% H-UCL	2.82
Gamma Distribution Test with Detected Values On	lv	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.428	Data do not follow a Discernable Distribution (0.05)	
Theta Star	8.275	bata de not follow a biocornable biotribation (0.00)	
nu star	65.88		
A-D Test Statistic	6.173	Nonparametric Statistics	
5% A-D Critical Value	0.833	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.833	Mean	2.6
5% K-S Critical Value	0.109	SD	11.28
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	1.098
		95% KM (t) UCL	4.421
Assuming Gamma Distribution		95% KM (z) UCL	4.405
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	4.417
Minimum	0.000001	95% KM (bootstrap t) UCL	8.75
Maximum	112	95% KM (BCA) UCL	4.621
Mean	2.55	95% KM (Percentile Bootstrap) UCL	4.645
Median	0.39	95% KM (Chebyshev) UCL	7.384
SD	11.34	97.5% KM (Chebyshev) UCL	9.454
k star	0.159	99% KM (Chebyshev) UCL	13.52
Theta star	16.03		
Nu star	34.03	Potential UCLs to Use	
AppChi2	21.69	95% KM (Chebyshev) UCL	7.384
95% Gamma Approximate UCL	4.001		
05% Adjusted Commo LICI	4 026		

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

4.026

Chromium

General Statistics

Number of Valid Observations 107 Number of Distinct Observations 96

Raw Statistics

Minimum 4.86 Maximum 3820 Mean 78.24 Median 21.1 SD 374.9

Std. Error of Mean 36.25 Coefficient of Variation 4.792

Skewness 9,599

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.422 Lilliefors Critical Value 0.0857

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% Student's-t UCL 138.4 95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 173.8 95% Modified-t UCL (Johnson-1978) 144

Gamma Distribution Test

k star (bias corrected) 0.551 Theta Star 141.9

MLE of Mean 78.24 MLE of Standard Deviation 105.4

nu star 118

Approximate Chi Square Value (.05) 93.94 Adjusted Level of Significance 0.0478 Adjusted Chi Square Value 93.64

Anderson-Darling Test Statistic 17.05 Anderson-Darling 5% Critical Value 0.813

Kolmogorov-Smirnov Test Statistic 0.315 Kolmogorov-Smirnov 5% Critical Value 0.0923

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 98.3 95% Adjusted Gamma UCL 98.61 **Lognormal Distribution Test**

Log-transformed Statistics

Lilliefors Test Statistic 0.18 Lilliefors Critical Value 0.0857

Minimum of Log Data 1.581

Maximum of Log Data 8.248

Mean of log Data 3.247

SD of log Data 0.974

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 50.8 95% Chebyshev (MVUE) UCL 61.11 97.5% Chebyshev (MVUE) UCL 69.8 99% Chebyshev (MVUE) UCL 86.85

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 137.9 95% Jackknife UCL 138.4 95% Standard Bootstrap UCL 138.3 95% Bootstrap-t UCL 372.7 95% Hall's Bootstrap UCL 329.7 95% Percentile Bootstrap UCL 147.2

95% BCA Bootstrap UCL 214.5 95% Chebyshev(Mean, Sd) UCL 236.2

97.5% Chebyshev(Mean, Sd) UCL 304.6

99% Chebyshev(Mean, Sd) UCL 438.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Dimethylphthalate

General Statistics

Number of Valid Data 82 Number of Detected Data Number of Distinct Detected Data Number of Non-Detect Data Percent Non-Detects 98.78%

81

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Dimethylphthalate was not processed!

Lead

	General S	statistics	
Number of Valid Data	107	Number of Detected Data	105
Number of Distinct Detected Data	96	Number of Non-Detect Data	2
		Percent Non-Detects	1.87%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	7.1	Minimum Detected	1.96
Maximum Detected	1000	Maximum Detected	6.908
Mean of Detected	68.62	Mean of Detected	3.466
SD of Detected	133.7	SD of Detected	1.08
Minimum Non-Detect	15	Minimum Non-Detect	2.708
Maximum Non-Detect	15	Maximum Non-Detect	2.708
	UCL Sta	utietice	
Normal Distribution Test with Detected Values Only		Lognormal Distribution Test with Detected Values Onl	v
Lilliefors Test Statistic	0.339	Lilliefors Test Statistic	0.0914
5% Lilliefors Critical Value	0.0865	5% Lilliefors Critical Value	0.0865
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	67.47	Mean	3.439
SD	132.7	SD	1.088
95% DL/2 (t) UCL	88.75	95% H-Stat (DL/2) UCL	71.77
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	30.95	Mean in Log Scale	3.444
SD	166	SD in Log Scale	1.082
95% MLE (t) UCL	57.59	Mean in Original Scale	67.53
95% MLE (Tiku) UCL	58.62	SD in Original Scale	132.6
		95% t UCL	88.8
		95% Percentile Bootstrap UCL	90.6
		95% BCA Bootstrap UCL	98.23
		95% H UCL	71.55
Gamma Distribution Test with Detected Values Only	,	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.765	Data do not follow a Discernable Distribution (0.05)	
Theta Star	89.68	· ,	
nu star	160.7		
A-D Test Statistic	6.948	Nonparametric Statistics	
5% A-D Critical Value	0.794	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.794	Mean	67.53
5% K-S Critical Value	0.0915	SD	132
Data not Gamma Distributed at 5% Significance Leve	əl	SE of Mean	12.82
		95% KM (t) UCL	88.81
Assuming Gamma Distribution		95% KM (z) UCL	88.62
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	88.81
Minimum	0.000001	95% KM (bootstrap t) UCL	100.5
Maximum	1000	95% KM (BCA) UCL	88.93
Mean	67.33	95% KM (Percentile Bootstrap) UCL	89.39
Median	30.2	95% KM (Chebyshev) UCL	123.4
SD	132.7	97.5% KM (Chebyshev) UCL	147.6
k star	0.572	99% KM (Chebyshev) UCL	195.1
Theta star	117.7	Detential LIOL e to Line	
Nu star	122.4	Potential UCLs to Use	100.4
AppChi2	97.84	95% KM (Chebyshev) UCL	123.4
95% Gamma Approximate UCL 95% Adjusted Gamma UCL	84.23 84.49		
DI /2 is not a recommended method			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Tetrachloroethene

Touachioroculone			
	Conoral Ct	ntiation	
Noveles and Vallet Date	General Sta		24
Number of Valid Data	106	Number of Detected Data	24
Number of Distinct Detected Data	23	Number of Non-Detect Data	82
		Percent Non-Detects	77.36%
Bour Statistics		Log transformed Statistics	
Raw Statistics	0.0000	Log-transformed Statistics	0.110
Minimum Detected	0.0003	Minimum Detected	-8.112
Maximum Detected	8.1	Maximum Detected	2.092
Mean of Detected	0.921	Mean of Detected	-3.143
SD of Detected	1.987	SD of Detected	3.075
Minimum Non-Detect	0.0009	Minimum Non-Detect	-7.013
Maximum Non-Detect	0.57	Maximum Non-Detect	-0.562
Note: Data have multiple DLs - Use of KM Method is recommended		Number treated as Non-Detect	99
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	7
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	93.40%
	1101 01-11	Late.	
Normal Distribution Test with Detected Values On	UCL Stati		
Normal Distribution Test with Detected Values Onl	•	Lognormal Distribution Test with Detected Values On	•
Shapiro Wilk Test Statistic	0.538	Shapiro Wilk Test Statistic	0.947
5% Shapiro Wilk Critical Value	0.916	5% Shapiro Wilk Critical Value	0.916
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
A		A	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.238	Mean	-5.32
SD	1.005	SD	2.564
95% DL/2 (t) UCL	0.4	95% H-Stat (DL/2) UCL	0.358
M : 17 PL 15 PL (MIS) M (I	.	L BOOM II L	
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	7.004
MLE yields a negative mean		Mean in Log Scale	-7.381
		SD in Log Scale	3.227
		Mean in Original Scale	0.209
		SD in Original Scale	1.007
		95% t UCL	0.372
		95% Percentile Bootstrap UCL	0.387
		95% BCA Bootstrap UCL	0.458
		95% H-UCL	0.53

Gamma Distribution Test with Detected Values On	ly	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.233	Data appear Lognormal at 5% Significance Level	
Theta Star	3.955		
nu star	11.18		
A-D Test Statistic	1.186	Nonparametric Statistics	
5% A-D Critical Value	0.879	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.879	Mean	0.21
5% K-S Critical Value	0.196	SD	1.003
Data not Gamma Distributed at 5% Significance Let		SE of Mean	0.0995
int damina producted at 0 /0 digitalion to		95% KM (t) UCL	0.375
Assuming Gamma Distribution		95% KM (z) UCL	0.374
Gamma ROS Statistics using Extrapolated Data	0.000001	95% KM (jackknife) UCL	0.372
Minimum	0.000001	95% KM (bootstrap t) UCL	0.539
Maximum	8.1	95% KM (BCA) UCL	0.391
Mean	0.215	95% KM (Percentile Bootstrap) UCL	0.379
Median	0.000001	95% KM (Chebyshev) UCL	0.644
SD	1.008	97.5% KM (Chebyshev) UCL	0.831
k star	0.089	99% KM (Chebyshev) UCL	1.2
Theta star	2.412		
Nu star	18.86	Potential UCLs to Use	
AppChi2	10.02	97.5% KM (Chebyshev) UCL	0.831
95% Gamma Approximate UCL	0.404		
0E9/ Adjusted Commo LICI	0.400		

95% Adjusted Gamma UCL Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

0.408

Thallium

	General Statistics		
Number of Valid Data	102	Number of Detected Data	5
Number of Distinct Detected Data	5	Number of Non-Detect Data	97
		Percent Non-Detects	95.10%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.43	Minimum Detected	-0.844
Maximum Detected	22	Maximum Detected	3.091
Mean of Detected	4.968	Mean of Detected	0.317
SD of Detected	9.523	SD of Detected	1.575
Minimum Non-Detect	0.365	Minimum Non-Detect	-1.008
Maximum Non-Detect	20	Maximum Non-Detect	2.996
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	101
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.02%

Warning: There are only 5 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set
the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

Normal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Normal at 5% Significance Level	UCL Statistics 0.569 0.762	Lognormal Distribution Test with Detected Values Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level	0.707 0.762
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.074	Mean	-0.588
SD	2.555	SD	0.888
95% DL/2 (t) UCL	1.494	95% H-Stat (DL/2) UCL	0.992
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-3.057
		SD in Log Scale	1.489
		Mean in Original Scale	0.326
		SD in Original Scale	2.176
		95% t UCL	0.683
		95% Percentile Bootstrap UCL	0.758
		95% BCA Bootstrap UCL 95% H-UCL	0.973 0.212
		95% H-UCL	0.212
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.331	Data do not follow a Discernable Distribution (0.05)	
Theta Star	15		
nu star	3.312		
A-D Test Statistic	1.067	Nonparametric Statistics	
5% A-D Critical Value	0.712	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.712	Mean	0.664
5% K-S Critical Value	0.372	SD	2.125
Data not Gamma Distributed at 5% Significance Lev	el	SE of Mean	0.235
		95% KM (t) UCL	1.055
Assuming Gamma Distribution		95% KM (z) UCL	1.051
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.978
Minimum	0.000001	95% KM (bootstrap t) UCL	4.403
Maximum	22	95% KM (BCA) UCL	1.596
Mean	0.351	95% KM (Percentile Bootstrap) UCL	1.385
Median	0.000001	95% KM (Chebyshev) UCL	1.69
SD	2.274	97.5% KM (Chebyshev) UCL	2.135
k star	0.0769	99% KM (Chebyshev) UCL	3.007
Theta star	4.558		
Nu star	15.69	Potential UCLs to Use	4.00
AppChi2	7.742	95% KM (Chebyshev) UCL	1.69
95% Gamma Approximate UCL	0.71		
95% Adjusted Gamma UCL	0.718		
: DL/2 is not a recommended method.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Appendix B-3 ProUCL Outputs for East Campus Soils 0-2 Feet Former York Naval Ordnance Plant, York, PA

Trichloroethene

Themorocalcine			
	General Stat	intion	
Number of Valid Data	106	Number of Detected Data	62
	49		44
Number of Distinct Detected Data	49	Number of Non-Detect Data	
		Percent Non-Detects	41.51%
Dow Chatlation		I are transformed Chatlation	
Raw Statistics	0.0006	Log-transformed Statistics	-7.419
Minimum Detected	0.0006	Minimum Detected	
Maximum Detected	7.8	Maximum Detected	2.054
Mean of Detected	0.299	Mean of Detected	-4.739
SD of Detected	1.235	SD of Detected	2.283
Minimum Non-Detect	0.0009	Minimum Non-Detect	-7.013
Maximum Non-Detect	0.57	Maximum Non-Detect	-0.562
N. B. I. B. H. OMMALI		N 1 N 5	404
Note: Data have multiple DLs - Use of KM Method is recommer	naea	Number treated as Non-Detect	101
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	5
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	95.28%
	1101 04-4-	*i	
Normal Distriction To a confidence of AVAL and Oct	UCL Statis		
Normal Distribution Test with Detected Values Onl	•	Lognormal Distribution Test with Detected Values On	•
Lilliefors Test Statistic	0.432	Lilliefors Test Statistic	0.158
5% Lilliefors Critical Value	0.113	5% Lilliefors Critical Value	0.113
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.202	Mean	-4.884
SD	0.952	SD	2.223
95% DL/2 (t) UCL	0.355	95% H-Stat (DL/2) UCL	0.195
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-5.494
		SD in Log Scale	2.097
		Mean in Original Scale	0.176
		SD in Original Scale	0.953
		95% t UCL	0.33
		95% Percentile Bootstrap UCL	0.341
		95% BCA Bootstrap UCL	0.418
		95% H-UCL	0.0746
Gamma Distribution Test with Detected Values Onl	y	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.208	Data do not follow a Discernable Distribution (0.05)	
Theta Star	1.438		
nu star	25.79		
A-D Test Statistic	9.685	Nonparametric Statistics	
5% A-D Critical Value	0.907	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.907	Mean	0.177
5% K-S Critical Value	0.125	SD	0.949
Data not Gamma Distributed at 5% Significance Lev	/el	SE of Mean	0.0929
•		95% KM (t) UCL	0.332
Assuming Gamma Distribution		95% KM (z) UCL	0.33
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	0.331
Minimum	0.000001	95% KM (bootstrap t) UCL	0.926
Maximum	7.8	95% KM (BCA) UCL	0.344
Mean	0.186	95% KM (Percentile Bootstrap) UCL	0.345
		, , , , , , , , , , , , , , , , , , , ,	
Median	0.0014	95% KM (Chebyshev) UCL	0.582
SD	0.955	97.5% KM (Chebyshev) UCL	0.758
k star	0.125	99% KM (Chebyshev) UCL	1.102
Theta star	1.488		
Nu star	26.48	Potential UCLs to Use	0
AppChi2	15.75	97.5% KM (Chebyshev) UCL	0.758
95% Gamma Approximate UCL	0.313		
95% Adjusted Gamma UCL	0.315		
Note: DL/2 is not a recommended method.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). For additional insight, the user may want to consult a statistician.

Antimony

Anumony			
	Canaral	Matintina	
November of Valid Date	General S		440
Number of Valid Data	367	Number of Detected Data	110
Number of Distinct Detected Data	61	Number of Non-Detect Data	257
		Percent Non-Detects	70.03%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.1	Minimum Detected	-2.303
Maximum Detected	122	Maximum Detected	4.804
Mean of Detected	4.163	Mean of Detected	-0.284
SD of Detected	15.36	SD of Detected	1.418
Minimum Non-Detect	0.42	Minimum Non-Detect	-0.868
Maximum Non-Detect	15	Maximum Non-Detect	2.708
maximum von Botost		maximum ron Botost	200
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	361
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	6
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	98.37%
Observations < Eargest ND are treated as NDs		Single DE Non-Detect i ercentage	30.37 /0
	UCL Sta	atistics	
Normal Distribution Tast with Detected Values Only			ala.
Normal Distribution Test with Detected Values Only Lilliefors Test Statistic		Lognormal Distribution Test with Detected Values Or Lilliefors Test Statistic	•
5% Lilliefors Critical Value	0.421	5% Lilliefors Critical Value	0.194
	0.0845		0.0845
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
A 1 N 1814 H 4			
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	2.012	Mean	-0.374
SD	8.567	SD	1.09
95% DL/2 (t) UCL	2.75	95% H-Stat (DL/2) UCL	1.413
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-1
, ,		SD in Log Scale	1.181
		Mean in Original Scale	1.532
		SD in Original Scale	8.563
		95% t UCL	2.269
		95% Percentile Bootstrap UCL	2.321
		95% BCA Bootstrap UCL	2.585
		·	
		95% H-UCL	0.85
Gamma Distribution Test with Detected Values Only		Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.382	<u> </u>	
· · · · · · · · · · · · · · · · · · ·		Data do not follow a Discernable Distribution (0.05))
Theta Star	10.89		
nu star	84.1		
A.D.T+ Ct-ti-ti-	45.0	Norman and Oraclada	
A-D Test Statistic	15.8	Nonparametric Statistics	
5% A-D Critical Value	0.846	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.846	Mean	1.505
5% K-S Critical Value	0.0932	SD	8.553
Data not Gamma Distributed at 5% Significance Leve	el	SE of Mean	0.449
		95% KM (t) UCL	2.245
Assuming Gamma Distribution		95% KM (z) UCL	2.244
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	2.243
Minimum	0.000001	95% KM (bootstrap t) UCL	3.049
Maximum	122	95% KM (BCA) UCL	2.407
Mean	2.015	95% KM (Percentile Bootstrap) UCL	2.305
Median	0.000001	95% KM (Chebyshev) UCL	3.462
SD	8.733	97.5% KM (Chebyshev) UCL	4.309
		· · · · · · · · · · · · · · · · · · ·	
k star	0.106	99% KM (Chebyshev) UCL	5.973
Theta star	18.94	Peter/211101 - to II	
Nu star	78.08	Potential UCLs to Use	0.46=
AppChi2	58.72	95% KM (BCA) UCL	2.407

Note: DL/2 is not a recommended method.

95% Gamma Approximate UCL

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

2.679

Aroclor-1254

	General S	Statistics	
Number of Valid Data	237	Number of Detected Data	74
Number of Distinct Detected Data	60	Number of Non-Detect Data	163
		Percent Non-Detects	68.78%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.013	Minimum Detected	-4.343
Maximum Detected	270	Maximum Detected	5.598
Mean of Detected	6.076	Mean of Detected	-0.736
SD of Detected	32.05	SD of Detected	2.02
Minimum Non-Detect	0.018	Minimum Non-Detect	-4.017
Maximum Non-Detect	0.89	Maximum Non-Detect	-0.117
Note: Data have multiple DLs - Use of KM Method is recomme	nded	Number treated as Non-Detect	210
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	27
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	88.61%
	UCL St	atistics	
Normal Distribution Test with Detected Values Or	•	Lognormal Distribution Test with Detected Values Or	•
Lilliefors Test Statistic	0.425	Lilliefors Test Statistic	0.0545
5% Lilliefors Critical Value	0.103	5% Lilliefors Critical Value	0.103
Data not Normal at 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.927	Mean	-2.831
SD	18.04	SD	1.97
95% DL/2 (t) UCL	3.863	95% H-Stat (DL/2) UCL	0.614
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-4.079
		SD in Log Scale	2.94
		Mean in Original Scale	1.906
		SD in Original Scale	18.04
		95% t UCL	3.841
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	4.12 6.224
		95% BCA BOOISITAD OCE 95% H-UCL	2.908
Common Distribution Took with Detected Values On		Data Distribution Test with Detected Velves Only	
Gamma Distribution Test with Detected Values Or k star (bias corrected)	0.273	Data Distribution Test with Detected Values Only Data appear Lognormal at 5% Significance Level	
Theta Star	22.24	Data appear Logitornial at 3 % Significance Level	
nu star	40.43		
A-D Test Statistic	6.88	Nonparametric Statistics	
5% A-D Critical Value	0.876	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.876	Mean	1.91
5% K-S Critical Value	0.113	SD	18.01
Data not Gamma Distributed at 5% Significance Le		SE of Mean	1.178
		95% KM (t) UCL	3.854
Assuming Gamma Distribution		95% KM (z) UCL	3.847
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	3.845
Minimum	0.000001	95% KM (bootstrap t) UCL	18.11
Maximum	270	95% KM (BCA) UCL	4.136
Mean	1.897	95% KM (Percentile Bootstrap) UCL	4.149
Median	0.000001	95% KM (Chebyshev) UCL	7.043
SD Is adapt	18.05	97.5% KM (Chebyshev) UCL	9.264
k star Theta star	0.0822 23.09	99% KM (Chebyshev) UCL	13.63
Nu star	38.95	Potential UCLs to Use	
AppChi2	25.66	97.5% KM (Chebyshev) UCL	9.264
	1 11		

Note: DL/2 is not a recommended method.

95% Gamma Approximate UCL

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

2.88

Arsenic

	General Statis	stics	
Number of Valid Data	382	Number of Detected Data	374
Number of Distinct Detected Data	115	Number of Non-Detect Data	8
Number of Distinct Detected Data	110	Percent Non-Detects	2.09%
		i elcent Non-Detects	2.0370
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.6	Minimum Detected	-0.511
Maximum Detected	221	Maximum Detected	5.398
Mean of Detected	6.688	Mean of Detected	1.656
SD of Detected	11.89	SD of Detected	0.586
Minimum Non-Detect	2	Minimum Non-Detect	0.693
Maximum Non-Detect	3	Maximum Non-Detect	1.099
Maximum Non-Detect	3	Maximum Non-Detect	1.099
Note: Data have multiple DLs - Use of KM Method is recommer	ndod	Number treated as Non-Detect	50
For all methods (except KM, DL/2, and ROS Methods),	ided	Number treated as Non-Betect	332
		Single DL Non-Detect Percentage	13.09%
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	13.09%
	UCL Statisti	re	
Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values Or	nlv
Lilliefors Test Statistic	0.32	Lilliefors Test Statistic	0.117
5% Lilliefors Critical Value	0.0458	5% Lilliefors Critical Value	0.0458
Data not Normal at 5% Significance Level	0.0400	Data not Lognormal at 5% Significance Level	0.0400
Data not Normal at 5 % Significance Level		Data not Lognormal at 3 % Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	6.57	Mean	1.622
SD	11.79	SD	0.624
95% DL/2 (t) UCL	7.565	95% H-Stat (DL/2) UCL	6.531
93% DL/2 (I) OCL	7.505	95% H-3lat (DL/2) OCL	0.551
Maximum Likelihood Estimate(MLE) Method		Log ROS Method	
Mean	5.484	Mean in Log Scale	1.632
SD	12.79	SD in Log Scale	0.603
95% MLE (t) UCL	6.562	Mean in Original Scale	6.583
· · · · · · · · · · · · · · · · · · ·	6.492	<u> </u>	
95% MLE (Tiku) UCL	0.492	SD in Original Scale	11.79
		95% t UCL	7.578
		95% Percentile Bootstrap UCL	7.688
		95% BCA Bootstrap UCL	8.355
		95% H UCL	6.494
Camma Distribution Test with Detected Values On	h.	Data Distribution Test with Detected Values Only	
Gamma Distribution Test with Detected Values On k star (bias corrected)	2.182	Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	
Theta Star	3.065	Data do not follow a Discernable Distribution (0.05)	,
nu star	1632		
Tiu stai	1032		
A-D Test Statistic	2 674F±28	Nonparametric Statistics	
5% A-D Critical Value	0.765	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.765	Mean	6.58
5% K-S Critical Value	0.0475	SD	11.77
Data not Gamma Distributed at 5% Significance Le		SE of Mean	0.603
Data not Gamina Distributed at 5% Significance Le	vei	95% KM (t) UCL	7.575
Accuming Commo Distribution		95% KM (t) GCL 95% KM (z) UCL	7.573
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	7.575 7.575
Minimum	0.000001	95% KM (bootstrap t) UCL	8.939
Maximum	221	95% KM (BCA) UCL	7.722
Mean	6.547	95% KM (Percentile Bootstrap) UCL	7.622
Median		95% KM (Percentile Bootstrap) OCL 95% KM (Chebyshev) UCL	9.21
Median SD	5 11 91	· · · · · · · · · · · · · · · · · · ·	
	11.81	97.5% KM (Chebyshev) UCL	10.35
k star	1.042	99% KM (Chebyshev) UCL	12.58
Theta star	6.281	Detential UOL - to U	
Nu star	796.4	Potential UCLs to Use	7 700
AppChi2	731.9	95% KM (BCA) UCL	7.722
95% Gamma Approximate UCL	7.124		

Note: DL/2 is not a recommended method.

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Benzo(a)pyrene

Delizo(a)pyrene			
	0	Nestination .	
N. J. WEID	General S		
Number of Valid Data	264	Number of Detected Data	101
Number of Distinct Detected Data	73	Number of Non-Detect Data	163
		Percent Non-Detects	61.74%
Raw Statistics		Log-transformed Statistics	4 0 4 0
Minimum Detected	0.0096	Minimum Detected	-4.646
Maximum Detected	74	Maximum Detected	4.304
Mean of Detected	1.785	Mean of Detected	-1.538
SD of Detected	7.879	SD of Detected	1.794
Minimum Non-Detect	0.036	Minimum Non-Detect	-3.324
Maximum Non-Detect	19	Maximum Non-Detect	2.944
N. B. I. W. B. II. Market			
Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	262
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	2
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.24%
	UCL St	otiotion	
Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values O	alv
Lilliefors Test Statistic	0.411	Lilliefors Test Statistic	0.114
5% Lilliefors Critical Value	0.0882	5% Lilliefors Critical Value	0.0882
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	0.84	Mean	-1.962
SD	4.955	SD	1.521
95% DL/2 (t) UCL	1.344	95% H-Stat (DL/2) UCL	0.57
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed to converge properly		Mean in Log Scale	-2.664
MEE memod famed to converge property		SD in Log Scale	1.732
		Mean in Original Scale	
		<u> </u>	0.728
		SD in Original Scale	4.93
		95% t UCL	1.229
		95% Percentile Bootstrap UCL	1.274
		95% BCA Bootstrap UCL	1.667
		95% H-UCL	0.422
Commo Distribution Tost with Detected Values On	.h.	Data Distribution Took with Detected Values Only	
Gamma Distribution Test with Detected Values On	-	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.319	Data do not follow a Discernable Distribution (0.05)
Theta Star	5.598		
nu star	64.42		
A-D Test Statistic	10.12	Nonparametric Statistics	
5% A-D Critical Value	0.862	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.862	Kapiari-Meler (KM) Metriod Mean	0.73
5% K-S Critical Value	0.0965	SD	4.921
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.305
		95% KM (t) UCL	1.233
Assuming Gamma Distribution		95% KM (z) UCL	1.231
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	1.231
Minimum	0.000001	95% KM (bootstrap t) UCL	2.27
Maximum	74	95% KM (BCA) UCL	1.36
Mean	0.856	95% KM (Percentile Bootstrap) UCL	1.317
Median	0.000001	95% KM (Chebyshev) UCL	2.058
SD	4.949	97.5% KM (Chebyshev) UCL	2.632
		, , ,	
k star Thota star	0.109	99% KM (Chebyshev) UCL	3.76
Theta star Nu star	7.823 57.8	Potential UCLs to Use	
	41.32		2.058
AppChi2	41.32	95% KM (Chebyshev) UCL	2.008

Note: DL/2 is not a recommended method.

95% Gamma Approximate UCL

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

1.198

Cadmium

	General Statist	ire	
Number of Valid Data	382	Number of Detected Data	200
Number of Distinct Detected Data	118	Number of Non-Detect Data	182
		Percent Non-Detects	47.64%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.05	Minimum Detected	-2.996
Maximum Detected	224	Maximum Detected	5.412
Mean of Detected	3.99	Mean of Detected	-0.407
SD of Detected	18.35	SD of Detected	1.595
Minimum Non-Detect	0.043	Minimum Non-Detect	-3.147
Maximum Non-Detect	3.3	Maximum Non-Detect	1.194
Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	354
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	28
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	92.67%
	UCL Statistic	s	
Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	nly
Lilliefors Test Statistic	0.415	Lilliefors Test Statistic	0.0791
5% Lilliefors Critical Value	0.0626	5% Lilliefors Critical Value	0.0626
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	2.338	Mean	-0.979
SD	13.38	SD	1.702
95% DL/2 (t) UCL	3.467	95% H-Stat (DL/2) UCL	2.042
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-1.603
•		SD in Log Scale	1.972
		Mean in Original Scale	2.164
		SD in Original Scale	13.4
		95% t UCL	3.294
		95% Percentile Bootstrap UCL	3.479
		95% BCA Bootstrap UCL	4.138
		95% H-UCL	1.92
Gamma Distribution Test with Detected Values Or	•	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.37	Data do not follow a Discernable Distribution (0.05))
Theta Star	10.8		
nu star	147.8		
A-D Test Statistic	18.14	Nonparametric Statistics	
5% A-D Critical Value	0.852	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.852	Mean	2.18
5% K-S Critical Value	0.0685	SD	13.38
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	0.687
Assessed to District the Common Production		95% KM (t) UCL	3.312
Assuming Gamma Distribution		95% KM (z) UCL	3.31
Gamma ROS Statistics using Extrapolated Data Minimum	0.000001	95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	3.311 5.387
Maximum	224	95% KM (BCA) UCL	3.656
Mean	2.29	95% KM (Percentile Bootstrap) UCL	3.466
Median	0.125	95% KM (Chebyshev) UCL	5.173
SD	13.43	97.5% KM (Chebyshev) UCL	6.468
k star	0.118	99% KM (Chebyshev) UCL	9.011
Theta star	19.37		
Nu star	90.31	Potential UCLs to Use	
AppChi2	69.4	97.5% KM (Chebyshev) UCL	6.468
95% Gamma Approximate UCL	2.98		
DEV. Adjusted Commo LICI			

Note: DL/2 is not a recommended method.

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Chromium

General Statistics

Number of Valid Observations 382 Number of Distinct Observations 223

Raw Statistics

Minimum 4.86 Maximum 8200 Mean 108.9 Median 19.3 SD 607.8 or of Mean 31.1

Std. Error of Mean 31.1 Coefficient of Variation 5.583 Skewness 10.15

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.432 Lilliefors Critical Value 0.0453

Data not Normal at 5% Significance Level

Assuming Normal Distribution 95% Student's-t UCL 160.2

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 177.3 95% Modified-t UCL (Johnson-1978) 162.8

Gamma Distribution Test

k star (bias corrected) 0.433
Theta Star 251.6
MLE of Mean 108.9
MLE of Standard Deviation 165.5
nu star 330.6
Approximate Chi Square Value (.05) 289.5
Adjusted Level of Significance 0.0494
Adjusted Chi Square Value 289.4

Anderson-Darling Test Statistic 84.32 Anderson-Darling 5% Critical Value 0.839 Kolmogorov-Smirnov Test Statistic 0.385 Kolmogorov-Smirnov 5% Critical Value 0.0495

Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Potential UCL to Use

95% Approximate Gamma UCL 124.3 95% Adjusted Gamma UCL 124.4 SD

Log-transformed Statistics

Minimum of Log Data 1.581 Maximum of Log Data 9.012 Mean of log Data 3.195 SD of log Data 1.032

Lognormal Distribution Test

Lilliefors Test Statistic 0.25 Lilliefors Critical Value 0.0453

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 46.6 95% Chebyshev (MVUE) UCL 53.25 97.5% Chebyshev (MVUE) UCL 58.33 99% Chebyshev (MVUE) UCL 68.32

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 160
95% Jackknife UCL 160.2
95% Standard Bootstrap UCL 159.2
95% Bootstrap-t UCL 210.4
95% Hall's Bootstrap UCL 199.7
95% Percentile Bootstrap UCL 167
95% BCA Bootstrap UCL 185.6
95% Chebyshev(Mean, Sd) UCL 244.4
97.5% Chebyshev(Mean, Sd) UCL 303.1

99% Chebyshev(Mean, Sd) UCL 303.1

Use 95% Chebyshev (Mean, Sd) UCL 244.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.

Appendix B-4 ProUCL Outputs for West Campus Soils 0-15 Feet Former York Naval Ordnance Plant, York, PA

Dimethylphthalate

General Statistics

Number of Valid Data 258 Number of Detected Data 1
Number of Distinct Detected Data 1
Number of Non-Detect Data 257
Percent Non-Detects 99.61%

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Dimethylphthalate was not processed!

Hexachlorobenzene

General Statistics

Number of Valid Data 258 Number of Detected Data 1
Number of Distinct Detected Data 1
Number of Non-Detect Data 257
Percent Non-Detects 99.61%

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable Hexachlorobenzene was not processed!

Lead

	General Sta	atistics	
Number of Valid Data	382	Number of Detected Data	380
Number of Distinct Detected Data	214	Number of Non-Detect Data	2
		Percent Non-Detects	0.52%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	1	Minimum Detected	0
Maximum Detected	2760	Maximum Detected	7.923
Mean of Detected	60.04	Mean of Detected	3.009
SD of Detected	207.6	SD of Detected	1.063
Minimum Non-Detect	15	Minimum Non-Detect	2.708
Maximum Non-Detect	15	Maximum Non-Detect	2.708
	UCL Stati	stics	
Normal Distribution Test with Detected Values On	ly	Lognormal Distribution Test with Detected Values Or	nly
Lilliefors Test Statistic	0.397	Lilliefors Test Statistic	0.175
5% Lilliefors Critical Value	0.0455	5% Lilliefors Critical Value	0.0455
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	59.76	Mean	3.004
SD	207.1	SD	1.063
95% DL/2 (t) UCL	77.23	95% H-Stat (DL/2) UCL	39.94
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	3.006
		SD in Log Scale	1.061
		Mean in Original Scale	59.78
		SD in Original Scale	207.1
		95% t UCL	77.25
		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	77.83 83.24
		95% H-UCL	39.96
Gamma Distribution Test with Detected Values On	lv	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.57	Data do not follow a Discernable Distribution (0.05)
Theta Star	105.3	(,
nu star	433.5		
A-D Test Statistic	57.95	Nonparametric Statistics	
5% A-D Critical Value	0.815	Kaplan-Meier (KM) Method	
K-S Test Statistic	0.815	Mean	59.78
5% K-S Critical Value	0.049	SD	206.8
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	10.6
		95% KM (t) UCL	77.25
Assuming Gamma Distribution		95% KM (z) UCL	77.21
Gamma ROS Statistics using Extrapolated Data	0.000004	95% KM (jackknife) UCL	77.25
Minimum	0.000001	95% KM (bootstrap t) UCL	85.86
Maximum	2760	95% KM (BCA) UCL	78.72
Mean Median	59.72 13.75	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	77.92 106
SD	207.1	97.5% KM (Chebyshev) UCL	125.9
k star	0.546	99% KM (Chebyshev) UCL	165.2
Theta star	109.3	33/0 KW (OHEDYSHEV) OOL	100.2
Nu star	417.5	Potential UCLs to Use	
AppChi2	371.1	95% KM (Chebyshev) UCL	106
95% Gamma Approximate UCL	67.18	33/3/444 (31.32)31.37) 332	
95% Adjusted Gamma UCL	67.21		
DI 10 to and a management to be settled.			

Note: DL/2 is not a recommended method.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Tetrachloroethene

	Conoral S	**************************************	
Number of Valid Data	General S 374	Number of Detected Data	112
Number of Distinct Detected Data	84	Number of Non-Detect Data	262
Names of District Detector Date	٠.	Percent Non-Detects	70.05%
Raw Statistics		Log-transformed Statistics	
Minimum Detected	0.0003	Minimum Detected	-8.112
Maximum Detected	1400	Maximum Detected	7.244
Mean of Detected SD of Detected	13.68 132.3	Mean of Detected SD of Detected	-3.49 2.79
Minimum Non-Detect	0.0009	Minimum Non-Detect	-7.013
Maximum Non-Detect	0.0009	Maximum Non-Detect	-1.013
Waximum Non-Detect	0.50	Waximum Non-Detect	-1.022
Note: Data have multiple DLs - Use of KM Method is recommer	nded	Number treated as Non-Detect	356
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	18
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	95.19%
Normal Distrikution Test with Detected Values On	UCL Sta		m.l.,
Normal Distribution Test with Detected Values On Lilliefors Test Statistic	0.481	Lilliefors Test Statistic	0.136
5% Lilliefors Critical Value	0.481	5% Lilliefors Critical Value	0.130
Data not Normal at 5% Significance Level	0.0037	Data not Lognormal at 5% Significance Level	0.0001
Data flot Normal at 5 % digitificance 25 ver		Data not Eognormal at 5 / 10 organicanos Esver	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	4.113	Mean	-4.914
SD	72.43	SD	2.398
95% DL/2 (t) UCL	10.29	95% H-Stat (DL/2) UCL	0.202
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean	IN/A	Mean in Log Scale	-7.229
MLE yields a negative mean		SD in Log Scale	3.496
		Mean in Original Scale	4.098
		SD in Original Scale	72.43
		95% t UCL	10.27
		95% Percentile Bootstrap UCL	11.52
		95% BCA Bootstrap UCL	19.01
		95% H-UCL	0.792
Gamma Distribution Test with Detected Values On k star (bias corrected)	0.131	Data Distribution Test with Detected Values Only	
Theta Star	104.3	Data do not follow a Discernable Distribution (0.05)
nu star	29.38		
Tid Gidi	20.00		
A-D Test Statistic	21.77	Nonparametric Statistics	
5% A-D Critical Value	0.996	. Kaplan-Meier (KM) Method	
K-S Test Statistic	0.996	Mean	4.098
5% K-S Critical Value	0.0986	SD	72.34
Data not Gamma Distributed at 5% Significance Le	vel	SE of Mean	3.757
		95% KM (t) UCL	10.29
Assuming Gamma Distribution		95% KM (z) UCL	10.28
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	10.27
Minimum	0.000001	95% KM (bootstrap t) UCL	241.1
Maximum	1400	95% KM (BCA) UCL	11.61
Mean	4.391	95% KM (Percentile Bootstrap) UCL	11.51
Median	0.000001	95% KM (Chebyshev) UCL	20.48
SD k stor	72.47	97.5% KM (Chebyshev) UCL	27.56
k star Theta star	0.072	99% KM (Chebyshev) UCL	41.48
Nu star	60.95 53.88	Potential UCLs to Use	
AppChi2	38.02	97.5% KM (Chebyshev) UCL	27.56
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.02	0.1070 (0.100) 0.1007	

Note: DL/2 is not a recommended method.

95% Gamma Approximate UCL

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

6.223

Thallium

	General St	tatistics	
Number of Valid Data	367	Number of Detected Data	77
Number of Distinct Detected Data	51	Number of Non-Detect Data	290
114.11201 01 21011101 20100104 2414	0.	Percent Non-Detects	79.02%
Raw Statistics	0.000	Log-transformed Statistics	0.704
Minimum Detected	0.062	Minimum Detected	-2.781
Maximum Detected	212	Maximum Detected	5.357
Mean of Detected	4.991	Mean of Detected	0.0833
SD of Detected	24.26	SD of Detected	1.352
Minimum Non-Detect	0.3	Minimum Non-Detect Maximum Non-Detect	-1.204
Maximum Non-Detect	20	iwaximum Non-Detect	2.996
Note: Data have multiple DLs - Use of KM Method is recommen	nded	Number treated as Non-Detect	364
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	3
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	99.18%
	UCL Stat	tistics	
Normal Distribution Test with Detected Values On		Lognormal Distribution Test with Detected Values Or	nly
Lilliefors Test Statistic	0.42	Lilliefors Test Statistic	0.131
5% Lilliefors Critical Value	0.101	5% Lilliefors Critical Value	0.101
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.939	Mean	-0.272
SD	11.23	SD	1.05
95% DL/2 (t) UCL	2.906	95% H-Stat (DL/2) UCL	1.488
3378 BB2 (t) 33E	2.500	30% 11 Stat (BE/2) 50E	1.400
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-1.143
		SD in Log Scale	1.213
		Mean in Original Scale	1.323
		SD in Original Scale	11.22
		95% t UCL	2.289
		95% Percentile Bootstrap UCL	2.474
		95% BCA Bootstrap UCL	3.181
		95% H-UCL	0.77
Gamma Distribution Test with Detected Values Or	ılv	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.419	Data do not follow a Discernable Distribution (0.05)
Theta Star	11.91		,
nu star	64.56		
ABTION	0.705	N	
A-D Test Statistic	8.785	Nonparametric Statistics	
5% A-D Critical Value	0.835	Kaplan-Meier (KM) Method	1 2 4 2
K-S Test Statistic 5% K-S Critical Value	0.835	Mean SD	1.343
Data not Gamma Distributed at 5% Significance Le	0.109	SE of Mean	11.2 0.59
Data not Gamma Distributed at 5% Significance Le	vei		
Assuming Commo Distribution		95% KM (t) UCL 95% KM (z) UCL	2.315 2.312
Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data		95% KM (2) UCL 95% KM (jackknife) UCL	2.312
Minimum	0.000001	95% KM (bootstrap t) UCL	6.353
Maximum	212	95% KM (BCA) UCL	2.625
Mean	1.611	95% KM (Percentile Bootstrap) UCL	2.501
Median	0.000001	95% KM (Chebyshev) UCL	3.912
SD	11.3	97.5% KM (Chebyshev) UCL	5.024
k star	0.0953	99% KM (Chebyshev) UCL	7.208
Theta star	16.9	3370 Rivi (Onebysnev) OCL	1.200
Nu star	69.95	Potential UCLs to Use	
AppChi2	51.7	95% KM (BCA) UCL	2.625
95% Gamma Approximate UCL	2.18	55,51 (25,1) 552	_,,,
95% Adjusted Camma LICI	2 192		

Note: DL/2 is not a recommended method.

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

Trichloroethene

THE HIGH DE CHIEFLE			
	0	04-41-41	
N. J. WEID.	General		40=
Number of Valid Data	382	Number of Detected Data	187
Number of Distinct Detected Data	114	Number of Non-Detect Data	195
		Percent Non-Detects	51.05%
Day Overtestee		Landan famos 1 Octobrila	
Raw Statistics	0.0000	Log-transformed Statistics	7 440
Minimum Detected	0.0006	Minimum Detected	-7.419
Maximum Detected	460	Maximum Detected	6.131
Mean of Detected	3.849	Mean of Detected	-4.162
SD of Detected	34.62	SD of Detected	2.545
Minimum Non-Detect	0.0009	Minimum Non-Detect	-7.013
Maximum Non-Detect	0.36	Maximum Non-Detect	-1.022
Note: Data have multiple DLs - Use of KM Method is recommend	ded	Number treated as Non-Detect	358
For all methods (except KM, DL/2, and ROS Methods),		Number treated as Detected	24
Observations < Largest ND are treated as NDs		Single DL Non-Detect Percentage	93.72%
	1101.04		
Normal Distribution Tost with Dotoctod Values Only	UCL St		alv
Normal Distribution Test with Detected Values Only Lilliefors Test Statistic	0.463	Lognormal Distribution Test with Detected Values On Lilliefors Test Statistic	0.147
5% Lilliefors Critical Value	0.0648	5% Lilliefors Critical Value	0.0648
Data not Normal at 5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution		Assuming Lognormal Distribution	
DL/2 Substitution Method		DL/2 Substitution Method	
Mean	1.901	Mean	-4.546
		SD	
SD	24.26		2.249
95% DL/2 (t) UCL	3.948	95% H-Stat (DL/2) UCL	0.197
Maximum Likelihood Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a negative mean		Mean in Log Scale	-5.508
MEE yields a negative mean		SD in Log Scale	2.533
		Mean in Original Scale	1.887
		-	
		SD in Original Scale	24.26
		95% t UCL	3.934
		95% Percentile Bootstrap UCL	4.26
		95% BCA Bootstrap UCL	5.876
		95% H-UCL	0.161
Gamma Distribution Test with Detected Values Onl	.,	Data Distribution Test with Detected Values Only	
k star (bias corrected)	0.142	Data do not follow a Discernable Distribution (0.05	
Theta Star	27.09	Data do not follow a Discernable Distribution (0.00)	,
	53.14		
nu star	55.14		
A-D Test Statistic	38.07	Nonparametric Statistics	
5% A-D Critical Value	1.02	Kaplan-Meier (KM) Method	
K-S Test Statistic	1.02	Mean	1.887
5% K-S Critical Value	0.077	SD	24.23
		SE of Mean	
Data not Gamma Distributed at 5% Significance Lev	CI		1.243
Assuming Occurs Districts		95% KM (t) UCL	3.936
Assuming Gamma Distribution		95% KM (z) UCL	3.931
Gamma ROS Statistics using Extrapolated Data		95% KM (jackknife) UCL	3.934
Minimum	0.000001	95% KM (bootstrap t) UCL	11.96
Maximum	460	95% KM (BCA) UCL	4.432
Mean	2.065	95% KM (Percentile Bootstrap) UCL	4.236
Median	0.0008	95% KM (Chebyshev) UCL	7.305
SD	24.29	97.5% KM (Chebyshev) UCL	9.65
k star	0.0887	99% KM (Chebyshev) UCL	14.26
Theta star	23.26		
Nu star	67.8	Potential UCLs to Use	
AppChi2	49.85	97.5% KM (Chebyshev) UCL	9.65

Note: DL/2 is not a recommended method.

95% Gamma Approximate UCL

95% Adjusted Gamma UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

For additional insight, the user may want to consult a statistician.

2.808

Zinc

General Statistics

Number of Valid Observations 382 Number of Distinct Observations 285

Raw Statistics

Minimum 2 Maximum 37000 Mean 268.2 Median 44.15 SD 1970 Std. Error of Mean 100.8

Std. Error of Mean 100.8 Coefficient of Variation 7.346 Skewness 17.27

Relevant UCL Statistics

Normal Distribution Test

Lilliefors Test Statistic 0.446 Lilliefors Critical Value 0.0453

95% Student's-t UCL 434.4

Data not Normal at 5% Significance Level

Assuming Normal Distribution

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 529.2

95% Modified-t UCL (Johnson-1978) 449.2

Gamma Distribution Test k star (bias corrected) 0.413

Theta Star 649.2
MLE of Mean 268.2
MLE of Standard Deviation 417.3
nu star 315.6
Approximate Chi Square Value (.05) 275.5
Adjusted Level of Significance 0.0494
Adjusted Chi Square Value 275.3

Anderson-Darling Test Statistic 2.618E+28
Anderson-Darling 5% Critical Value 0.843
Kolmogorov-Smirnov Test Statistic 0.323
Kolmogorov-Smirnov 5% Critical Value 0.0497
Data not Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

95% Approximate Gamma UCL 307.3 95% Adjusted Gamma UCL 307.4

Log-transformed Statistics

Lognormal Distribution Test
Lilliefors Test Statistic 0.166
Lilliefors Critical Value 0.0453

Minimum of Log Data 0.693

Maximum of Log Data 10.52

Mean of log Data 4.014

SD of log Data 1.202

Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95% H-UCL 131.4 95% Chebyshev (MVUE) UCL 153.3 97.5% Chebyshev (MVUE) UCL 170.5 99% Chebyshev (MVUE) UCL 204.2

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95% CLT UCL 434
95% Jackknife UCL 434.4
95% Standard Bootstrap UCL 435.1
95% Bootstrap-t UCL 844.9
95% Hall's Bootstrap UCL 1007
95% Percentile Bootstrap UCL 452.7
95% BCA Bootstrap UCL 616.3
95% Chebyshev(Mean, Sd) UCL 707.5
97.5% Chebyshev(Mean, Sd) UCL 897.7
99% Chebyshev(Mean, Sd) UCL 1271

Potential UCL to Use

Use 95% Chebyshev (Mean, Sd) UCL 707.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). For additional insight, the user may want to consult a statistician.