Final

BUILDING 41 SOUTH SETTLING BASIN SITE INVESTIGATION REPORT FORMER YORK NAVAL ORDNANCE PLANT

SAIC Project 166345.00.08232.6072.00

Prepared for:

Harley-Davidson Motor Company Operations, Inc. York, PA

December 2009

Final

Building 41 South Settling Basin Site Investigation Report Former York Naval Ordnance Plant

SAIC Project 166345.00.08232.6072.00

Prepared for:

Harley-Davidson Motor Company Operations, Inc. York, PA

Prepared by:

Science Applications International Corporation 6310 Allentown Boulevard Harrisburg, PA 17112 (717) 901-8100

December 2009

Reviewed by:

du

Stephen M. Snyder, P.G. Project Director

Respectfully submitted,

Roger D. Myers Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND	1
2.0	TANK INSPECTION	4
3.0	SUBSURFACE SOIL INVESTIGATION	5
4.0	SOIL SAMPLING RESULTS	7
5.0	MONITORING WELL INSTALLATION	9
6.0	WATER SAMPLING RESULTS	10
7.0	SUMMARY	12
8.0	REMEDIAL ALTERNATIVES AND CONCLUSIONS	14

LIST OF FIGURES

Figure 1, Site Location Map	.Following Text
Figure 2, Building 41 South Basin Soil Samples	.Following Text
Figure 3, Building 41 South Basin Groundwater Chemistry Summary	.Following Text

LIST OF TABLES

Table 1, Soils Data Summary – Building 41 – South Settling Basin	Following Text
Table 2, Water Data Summary – Building 41 (B41) South Settling Basin	Following Text

LIST OF APPENDICES

Appendix A, Photographs	Following Text
Appendix B, Historical Photographs and Drawings	Following Text
Appendix C, Soil Boring Logs	Following Text
Appendix D, Well Construction Log for MW-116	Following Text
Appendix E, Groundwater Sampling Log	Following Text
Appendix F, Waste Disposal Documentation	Following Text

1.0 INTRODUCTION AND BACKGROUND

This site investigation report is for the former South Settling Basin (known as Solid Waste Management Unit [SWMU] No. 37), as well as the former Neutralization Tank (SWMU No. 40), which includes the two small basins to the east of the South Settling Basin, and the Oxidation Tank (SWMU No.41), which is the larger basin to the northeast of the South Settling Basin. Throughout this report, the three basins to the east of the South Settling Basin are collectively referred to as the "Eastern Basins." SWMU No. 37, No. 40, and No. 41 were located in the northeast end of Building 41 at the former York Naval Operations Plant (fYNOP) facility in York, Pennsylvania (see location on Figure 1). Activities conducted for this project were performed in accordance with the scope of work in Science Applications International Corporation (SAIC) proposal number 01-1633-71-2009-048, dated March 14, 2008. Photographs of the site activities are included in Appendix A.

Harley-Davidson entered into a Settlement Agreement with the Department of Defense and the Department of the Navy (as facilitated by the United States Army Corps of Engineers [USACE]) on January 24, 1995. That agreement established a cost sharing arrangement between Harley-Davidson, as the present site owner, and the United States, as the past owner, for costs incurred in response to environmental contamination at the facility. A Trust Fund was established to handle the cost sharing of those response actions. All environmental response actions must be completed in accordance with federal methods. This scope of work and proposal were approved by Harley-Davidson and the York Remediation Trust Fund on March 26, 2008.

Building 41 is located in the northern part of the fYNOP facility, north of Buildings 4 and 2 (see Figure 1). This building has been operated as a wastewater treatment plant (WWTP) since 1969. It was built and installed in 1968. A photographic and historical drawing summary of Building 41 is shown in Appendix B.

The plant has historically performed treatment of process water generated from fabrication, machining, plating, and painting operations. Wastes treated in the plant which have the potential to impact soil or groundwater have included process wastewaters such as spent acid and alkaline

- 2 -

cleaners; wastewaters containing nickel, zinc, chromium, and cyanides; and several organic constituents listed in the total toxics organics list. The WWTP had operated under National Pollutant Discharge Elimination System (NPDES) Permit No. 0007765, which was originally issued on December 15, 1983. The types of treatment that were conducted in the WWTP included cyanide oxidation, equalization, chrome reduction, pH adjustment, chemical precipitation, flocculation, settling, neutralization, oxidation, and sludge processing (by filter press). The facility no longer performs cyanide oxidation. Most of the treatment processes still continue but have been upgraded over the years to improve the treatment efficiencies or to minimize environmental liabilities and meet regulatory reporting requirements. Treated wastewater effluent was originally discharged from the WWTP to Codorus Creek through Outfall 001, which consisted of treated process waste streams. In 1994, the effluent flow was redirected to the Springettsbury Township sanitary sewer.

The South Settling Basin is identified as SWMU No. 37 in the January 1989, Phase II Resource Conservation and Recovery Act (RCRA) Facility Assessment report prepared by A.T. Kearney, Inc. (Kearney) for the United States Environmental Protection Agency (EPA), Region III. In that report, two settling basins were identified as Settling Tank No. 1 (north basin, SWMU No.36) and Settling Tank No. 2 (south basin, SWMU No. 37). These tanks operated in parallel as flocculation and settling tanks. They received wastewater from the flocculation tank (SWMU No. 35) via an open channel conduit. Sludge from the two settling basins was pumped into a nearby sludge settling tank (SWMU No. 38) and then into a filter press (SWMU No. 39). Clarified discharge water from the two settling basins flowed over a weir and into a neutralization tank (SWMU No. 40) and then into an oxidation tank (SWMU No. 41), prior to gravity discharge to the east via an open channel. The Kearney report concludes that the potential for a release to soil or groundwater from these settling basins was low because of biannual inspections and continuous monitoring of flows into and out of the two tanks. The report further suggests verifying the integrity of the tanks and conducting soil sampling where the integrity of the tanks was questionable.

The South Settling Basin is a subgrade, 12-inch-thick concrete-lined open-top tank with approximate dimensions of 49 feet long x 14 feet wide x 6 feet deep. The concrete tank is

underlain by 10 inches of crushed stone. The tank design had a capacity of 27,000 gallons. The South Settling Basin was formerly used to settle sludge from influent wastewater prior to being sent to the filter press. Sludge was pumped from the concrete sludge sump in the west end of the tank to the filter press several times a week during routine operations. Wastewater coming into this tank was received from the flocculation tank (and for a brief period from the pH adjustment tank). Influent entered the tank from the west end via two 4-inch-diameter openings, while clarified effluent exited the tank through the weir at the east end. Clarified discharge from this tank was sent to the neutralization tank.

In early 2008, the South Settling Basin in Building 41 was emptied in order to conduct the subsurface soil investigations described in this report. During January 2008, SAIC collected subsurface soil samples from eight soil borings in the South Settling Basin. In addition, SAIC collected soil samples from five borings in several smaller basins to the east. The two smallest eastern basins have been identified by EPA as a neutralization tank (SWMU No. 40). The northern tank to the east was identified by EPA as the oxidation tank (SWMU No. 41).

During the soil investigation of the South Settling Basin, black silty water was encountered in the gravel layer beneath the concrete under much of the area. It contained elevated concentrations of heavy metals and some organic compounds. The source of the water found in this excavation is unclear, but it is theorized that it may be from historic spills from the one or more of the wastewater tanks in the building or from a historic release of solvent fuels in the pipe trench leading from the Old Waste Containment area to Building No. 10, Power House.

2.0 TANK INSPECTION

Removal of the South Settling Basin and Eastern Basins consisted of dismantling equipment, removing liquid and sludge, permanently plugging influent and effluent lines, and cleaning the concrete surface. These tasks were completed by others prior to SAIC mobilizing to the site (see photographs in Appendix A). SAIC's initial involvement included an inspection of the concrete surfaces in the North Settling Basin for cracks or other evidence of past releases.

The settling basin inspection activities were performed in accordance with confined space entry protocol. Details regarding the procedures utilized were outlined in a site-specific health and safety plan. All work was completed safely and without incident.

Subsequently, SAIC inspected the concrete surfaces of the South Settling Basin and the smaller eastern basins for cracks or other evidence of past releases. SAIC's inspection revealed a possible crack on the floor in the middle of the southern side of the South Settling Basin. One vertical crack in the wall between the northernmost of the eastern basins was observed. It appeared that this crack had been repaired previously. No other indications of cracks were observed during an inspection of the eastern basins. SAIC attempted to locate soil borings as close to the observed crack as possible to determine if any of regulated compounds had been released. Photographs of the crack and work conducted are included in Appendix A.

3.0 SUBSURFACE SOIL INVESTIGATION

Based on the results of the inspection and knowledge of the treatment process at the WWTP, eight soil boring locations (SB-001 through SB-008) were chosen for the South Settling Basin. Due to the detection of impacted soil and evidence of black water in the gravel layer under portions of the South Settling Basin, SAIC added several soil borings to the study in order to determine the limits of these impacts. Five soil boring locations (SB-009 through SB-013) were added in the eastern basins, and two soil boring locations (SB-014 and SB-015) were chosen to the east of the eastern settling basins. SAIC completed the soil borings on February 5-8, 2008; April 2, 2008; and May 13, 2008. Figure 2 shows the locations of these soil borings. Concrete coring was used to cut through the concrete floor of the basin, and vacuum extraction was used to remove the crushed stone subbase. Concrete thickness varied from 6 inches to 12 inches, and the crushed stone subbase thickness varied from 3 inches at SB-013 to 18 inches at SB-003. The soil borings were advanced with a Geoprobe[®] sampler until refusal or a maximum depth of 10 feet below the top of the concrete floor. During soil boring advancement, soil type, color, photoionization detector (PID) response, and other relevant information were recorded on soil boring logs, which are included in Appendix C.

Although two soil samples had been proposed to be collected from each boring, the actual number of samples that were collected from each boring was modified based on observed conditions. Two samples were collected from borings SB-003, 005, and 006. Three samples were collected from boring 017, and four samples were collected from boring 014. No samples were collected from boring 011 because of Geoprobe[®] refusal at 2.7 feet below top of concrete. One sample was collected from the remainder of the borings. For quality assurance/quality control (QA/QC) purposes, duplicate samples were collected from boring 005 and 006. At boring locations 004, 005, 009, and 011, a black liquid was encountered. A sample of the liquid was collected at boring 009. All soil samples and the liquid sample were submitted to TestAmerica Laboratories, Inc. (TestAmerica) for analysis of priority pollutant volatile organic compounds (VOCs), priority pollutant semi-volatile organic compounds (SVOCs), total priority pollutant metals, hexavalent chromium, cyanide (total and free), and percent solids. After the soil samples were collected, the borings were filled with bentonite, and the surface was sealed

with concrete, except for locations 009 and 011, which were left open temporarily for monitoring of the black liquid found in the excavation.

4.0 SOIL SAMPLING RESULTS

Upon receipt of the laboratory analytical data package from TestAmerica, the results were tabulated and compared to Pennsylvania Department of Environmental Protection's (DEP) nonresidential medium-specific concentrations (MSCs) for soils for the direct contact and soil-to-groundwater pathways. Analytical data received from TestAmerica are handled in accordance with SAIC's Quality Assurance Project Plan (QAPP, July 2009). Laboratory data packages are verified at SAIC and evaluated for completeness, technical holding times, blanks, duplicates, laboratory control samples, matrix spike samples, surrogates, and calibration to standards. Electronic data deliverables from the laboratory are entered into the fYNOP data base, which is stored in the ARC IMS system and checked for completeness against the chain-of-custody record. Electronic analytical data are stored on an SAIC server, as well as at the laboratory. Laboratory records are retained at TestAmerica for a period of five years after the report is issued. The analytical results are summarized and compared with the selected criteria in Table 1.

The concentration of vinyl chloride (0.63 milligrams per kilogram [mg/kg]) detected in the sample from boring 004 at 1 to 3 feet deep exceeded the soil-to-groundwater MSC of 0.2 mg/kg. The concentration of n-nitrosodi-n-propylamine (0.075 mg/kg) detected in the sample from boring 007 at 1 to 3 feet deep exceeded the soil-to-groundwater MSC of 0.037 mg/kg. The concentrations of cis-1,2-dichloroethene (13 mg/kg), tetrachloroethene (51 mg/kg), and trichloroethene (8.9 mg/kg) detected in the sample from boring 007 at 4 to 6 feet deep exceeded the soil-to-groundwater MSCs of 7 mg/kg, 0.5 mg/kg, and 0.5 mg/kg, respectively. The concentration of tetrachloroethene (4.1 mg/kg) and trichloroethene (1.1 mg/kg) detected in the sample from boring 007 at 8 to 10 feet deep exceeded the soil-to-groundwater MSCs of 0.5 mg/kg (the MSC value is the same for both compounds). The concentration of tetrachloroethene (2.1 mg/kg) detected in the sample from boring 014 at 14 to 16 feet deep exceeded the soil-to-groundwater MSC of 0.5 mg/kg.

Two additional soil borings (S4N and S7N) were installed on April 1-2, 2008, using the same techniques described above to further delineate the impacted soil in the South Settling Basin adjacent to borings 004 and 007 (see Figure 2 for these sample locations). Two soil samples

were collected from S4N, and three samples were collected from S7N. Concentrations of tetrachloroethene (up to 8.1 mg/kg) and trichloroethene (up to 1.5 mg/kg) detected in the samples from boring S7N at 10 to 12 feet deep, 13 to 14 feet deep, and 15 to 16 feet deep exceeded the soil-to-groundwater MSCs of 0.5 mg/kg. The concentration of tetrachloroethene (2.1 mg/kg) detected in boring 014 along the eastern wall of the building exceeded the soil-to-groundwater MSC of 0.5 mg/kg.

5.0 MONITORING WELL INSTALLATION

A monitoring well (designated as MW-116) was installed to the west of Building 41 on April 14-17, 2008 (see Figure 3 for the location of MW-116). The well was installed to investigate the groundwater quality to the west (and presumably downgradient) of Building 41. An air-rotary drill rig was used to install the well to a depth of 50.8 feet below ground surface. During drilling, the soil type, color, PID response, and other relevant information were recorded on the drilling log which is included in Appendix D.

MW-116 was sampled on May 21, 2008, and September 3, 2008, as part of the Supplemental Remedial Investigation (RI) first and second rounds of water sampling. Sampling logs for MW-116 are provided in Appendix E. The samples were submitted to TestAmerica for analysis of VOCs, SVOCs, dissolved and total hexavalent chromium, dissolved and total metals, free cyanide, and total cyanide.

6.0 WATER SAMPLING RESULTS

Upon receipt of the laboratory analytical data package from TestAmerica, the results were tabulated to be compared to the MSCs for used and non-used aquifers. The results were also compared to the maximum contaminant levels (MCLs) for drinking water.

The analytical results for the samples collected from MW-116 were compared with the selected criteria in Table 2 and exceedances are summarized below:

- During both sampling events, the concentrations of 1,1-dichloroethene (46 micrograms per liter [μg/L] and 40 μg/L) exceeded the MSC of 7 μg/L.
- The concentrations of cis-1,2-dichloroethene (1,200 μg/L and 1,100 μg/L) exceeded the MSC of 70 μg/L.
- The concentrations of methylene chloride (140 μg/L and 50 μg/L) exceeded the MSC of 5 μg/L.
- The concentrations of tetrachloroethene (310 μg/L and 201 μg/L) exceeded the MSC of 5 μg/L.
- The concentrations of trichloroethene (570 μg/L and 1,480 μg/L) exceeded the MSC of 5 μg/L.
- The concentrations of vinyl chloride (37 μ g/L and 27 μ g/L) exceeded the MSC of 2 μ g/L.

The analytical results for the black aqueous sample collected from the gravel layer at soil boring 009 also are included on Table 2. This water is believed to represent perched water conditions since the local groundwater elevation in the vicinity of Building 41 are known to range from 15 to 20 below ground surface (bgs). The black aqueous water sample was collected from directly under the basin in a gravel layer that was above a clay lens at approximately 6 feet bgs. The analytical results for the perched water samples were compared with the selected criteria in Table 2, and exceedances are summarized below (refer to Table 2 for the MSC values):

- The detected concentration for cyanide (4,500 μ g/L).
- The concentration of antimony (40.2 μ g/L) was above its MSC.

- The concentration of arsenic ($26 \mu g/L$) was greater than its MSC.
- Concentrations of cadmium $(1,210 \mu g/L)$ exceeded its MSC.
- The chromium concentration (9,190 μ g/L) was above its MSC.
- The concentration of lead (67.6 μ g/L) was above its MSC.
- The detected concentration of nickel $(3,530 \ \mu g/L)$ was above its MSC.
- The concentration of zinc (4,640 μ g/L).
- Concentrations of bis(2-ethylhexyl)phthalate (140 µg/L).
- Vinyl chloride was detected at a concentration (15 μg/L) that was greater than its MSC value.

- 12 -

7.0 SUMMARY

The subsurface conditions at the south and eastern settling basins in Building 41 were characterized in accordance with the approved work plan. Based on the results obtained, it is likely that compounds detected in the shallow (up to 6 feet deep) soil samples from borings 004 and 007 were related to the black perched water under the basin and from other sources. Organic compounds n-nitrosodi-n-propylamine, vinyl chloride, 1,2-dichloroethene, tetrachloroethene, and trichloroethane were detected at concentrations greater than their respective MSCs in these shallow soil samples.

The black perched liquid that was sampled in boring 009 was also observed in boring 011. The black perched water contained concentrations of cyanide, various plating metals, bis(2-ethylhexyl)phthalate, and vinyl chloride that exceeded groundwater MSCs. In addition, the pH of this water was high (above 10). Due to the pH and metals present, these liquids may have leaked from adjacent wastewater treatment basins. From the water sample results discussed above, it is evident that this perched liquid may have contributed to the impacted soils beneath the southern and eastern basins.

The compounds detected in the deeper soil samples (8 to 16 feet deep) which exceeded respective MSCs for tetrachloroethene and trichloroethene were found in borings 007, 014, and S7N. These soils are impacted by chlorinated solvents which might be associated with a deeper VOC source or possibly from migration of groundwater from an upgradient source. It is also possible that some of the chlorinated solvent impacts observed in these soil samples could have been related to historic releases of solvents in the pipe trench along the eastern side of the eastern basins. For these reasons, the work plan to mitigate the black liquid from under the basins (March 2008) also includes a plan to excavate and investigate the former pipe trench along the eastern side of the basins.

Compounds that were detected in groundwater samples above the MSCs in the samples collected from MW-116 were tetrachloroethene, perchloroethene, 1,2-dichloroethene, 1,1-dichloroethene, vinyl chloride, and methylene chloride. Most of these compounds are the same as those that

were detected in the soil samples or the sample of the black perched liquid found under the south and eastern basins. However, these are also the same compounds that are found elsewhere across the fYNOP facility.

8.0 REMEDIAL ALTERNATIVES AND CONCLUSIONS

SAIC considered numerous remedial alternatives for the impacted soil and perched water observed under the southern and eastern basins. Since any of the soil remedial alternatives would be impeded by the layer of perched black water under the basins, it was decided to first remove the perched water. On May 13, 2008, SAIC removed approximately 1,320 gallons of this liquid from open boreholes 009 and 011 using a vacuum truck. That liquid was disposed of off-site at Clean Harbors as a hazardous waste. Appendix F shows the waste manifest for this waste. All of the perched water could not be removed from the gravel layer using this technique; consequently, a separate work plan dated August 14, 2008, and approved on September 8, 2008, was prepared to install a sump along the east side of these basins to drain the black water layer (see Building 41 East Trench report).

The excavation and removal of impacted soils observed beneath the southern and eastern basins would be nearly impossible due to the proximity of the adjacent active wastewater treatment units. A second alternative for these impacted soils would be soil vapor extraction (SVE). This alternative could potentially be hampered by the clay residuum and pinnacled rock formations beneath the site. The presence of pinnacled bedrock indicates that the top of the limestone bedrock surface is highly irregular. These conditions typically limit the thickness of the unconsolidated, unsaturated zone that is present. The low concentrations and scattered location of these contaminants also would make SVE a difficult remedy for these soils. Additionally, these impacted soils are already protected from exposure to humans or further leaching by an impervious concrete cap (the existing basins) and the roof of Building 41.

Impacted soils observed at soil boring 014 would be similarly difficult to remove due to its proximity to the building footer and column support nearby. However, if the contaminants found in soil boring 014 were associated with a previous release from the eastern pipe trench, it might be possible to remove the source using a limited excavation of soils from beneath the former pipe trench. This was proposed in a separate work plan (see pipe trench soil removal discussion in the Building 41 East Trench report). Additional investigation and remediation activities that can be conducted at the present time are limited by the active wastewater treatment plant. The former

South Settling Basin will be considered as part of the Site-Wide Risk Assessment and Feasibility Study. If the status of the wastewater treatment plant changes to inactive in the future, closure activities will be more feasible and can then be recommended.

Since contaminants related to the impacted soil and perched water were found in the downgradient well (MW-116), an additional upgradient well along the east side of Building 41 will be needed to determine if the source of these groundwater contaminants might be coming from inside Building 41. The work scope for draining the black water and investigating the eastern pipe trench also includes a recommendation to drill a new groundwater well on the eastern side of Building 41 (see well MW-117 information in the Building 41 East Trench report).

FIGURES

Science Applications International Corporation

K:\GIS_Data\Harley\Projects\B41_B45_B51_AOC Report\B41S\Fig_1_Site_Area.mxd

K:\GIS_Data\Harley\Projects\B41_B45_B51_AOC Report\B41 Sump\Fig_2 SMP_LOCS.mxd

K:\GIS_Data\Harley\Projects\B41_B45_B51_AOC Report\B41S\Fig_3_MW_116.mxd

TABLES

Science Applications International Corporation

		Location/ID	MSC	MSC	MSC	EPA RBC ¹	B41S-SB-001	B41S-SB-002	B41S-SB-003	B41S-SB-003	B41S-SB-004	B41S-SB-005	B41S-SB-005	B41S-SB-005	B41S-SB-006	B41S-SB-006	B41S-SB-006	B41S-SB-007	B41S-SB-007	B41S-SB-007	B41S-SB-008
Protect Imple <	5	Depth (ft.)	Soil to GW	Direct Contact	Direct Contact	Industrial	2 - 4	1-3	2 - 4	5-7	1-3	1-3	4 - 6	4 - 6	1-3	4 - 6	4 - 6	1-3	4 - 6	8 - 10	1 - 3
Sinte Arrow Book	Parameter	umpic bute	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(mg/kg)	(mg/kg)	(ma/ka)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(mg/kg)	(mg/kg)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
	Cyanide, Free																				
	Cyanide, Free		200	56000	190000	20000	0.56 U	0.56 U	0.65 U	0.64 U	0.6 U	0.63 U	0.62 U	0.62 U	0.62 U	0.63 U	0.63 U	0.65 U	0.66 U	0.62 U	0.62 U
	Cyanide, Total		200	ECODO	400000		451	0.00 0 1	0.00 0.1	0.74.1	0.0.0	0.44.0	0.0011	0.42 D	0.00 0.1	0.0211	0.02.11	0.00 0.1	0.0011	0.0011	040 0 1
Description Dist Dist <thdist< th=""> Dist <thdist< th=""></thdist<></thdist<>	Hexavalent Chron	nium	200	30000	130000		1.55	0.20 0 3	0.30 8 3	0.743	0.2 0	0.14 D	0.02.0	0.12 B	0.38 8 3	0.03 0	0.03 0	0.22 8 5	0.00 0	0.02.0	0.10 0 3
	Hexavalent Chromi	ium	190	420	190000	200	0.45 U	0.44 U	0.34 B	0.51 U	0.5 U	0.52 U	0.51 U	0.49 U	0.5 U	0.4 B	0.67	0.28 B	0.52 U	0.2 B	0.33 B
Non- bias No. No. No. No. No	Mercury																				
State State <th< td=""><td>Mercury</td><td></td><td>10</td><td>840</td><th>190000</th><td>24</td><td>0.02 B</td><td>0.026 B</td><td>0.099</td><td>0.044</td><td>0.071 J</td><td>0.051 J</td><td>0.033 B J</td><td>0.074 J</td><td>0.02 B</td><td>0.019 B</td><td>0.015 B</td><td>0.037 B</td><td>0.031 B</td><td>0.058</td><td>0.047</td></th<>	Mercury		10	840	190000	24	0.02 B	0.026 B	0.099	0.044	0.071 J	0.051 J	0.033 B J	0.074 J	0.02 B	0.019 B	0.015 B	0.037 B	0.031 B	0.058	0.047
Disc. Disc. <th< td=""><td>Antimony</td><td></td><td>27</td><td>1100</td><th>190000</th><td>410</td><td>110</td><td>0.11 B J</td><td>0.16 B J</td><td>13U</td><td>121</td><td>13U</td><td>120</td><td>1211</td><td>121</td><td>13U</td><td>13U</td><td>13U</td><td>0.15 B J</td><td>2511</td><td>0.14 B J</td></th<>	Antimony		27	1100	190000	410	110	0.11 B J	0.16 B J	13U	121	13U	120	1211	121	13U	13U	13U	0.15 B J	2511	0.14 B J
Subs. Subs. <th< td=""><td>Arsenic</td><td></td><td>150</td><td>53</td><th>190000</th><td>1.6</td><td>1.4</td><td>0.45 B</td><td>9.8 Z</td><td>2.6 Z</td><td>4 Z</td><td>2 Z</td><td>1.6</td><td>1.9</td><td>1.3</td><td>0.89 B</td><td>1.1 B</td><td>2.6 Z</td><td>4.3 Z</td><td>3.9 Z</td><td>2.6 Z</td></th<>	Arsenic		150	53	190000	1.6	1.4	0.45 B	9.8 Z	2.6 Z	4 Z	2 Z	1.6	1.9	1.3	0.89 B	1.1 B	2.6 Z	4.3 Z	3.9 Z	2.6 Z
Distance Dista Dista <thdista< th=""> Dista Dista <</thdista<>	Barium		8200	190000	190000	190000	22.7	21.4 B	38.6	47.5	40 J	27.4 J	41.3 J	83.2 J	60.8	62.4	62.1	49.6	25.6 B	34.8 B	53.2
	Codmium		320	210	190000	2000	0.36 B J	0.27 B J	0.83 J	1 J	0.53	0.59	0.41 B	0.35 B	0.53 J	0.43 B J	0.41 B J	0.93 J	0.96 J	1.8 J	0.5 J
Singe Singe <th< td=""><td>Chromium</td><td></td><td>30</td><td>210</td><th>130000</th><td>1500000</td><td>10.6</td><td>7.8</td><td>12.7</td><td>16.2</td><td>23.7 J</td><td>11.8 J</td><td>9.3 J</td><td>18 J</td><td>19.3</td><td>14.3</td><td>14.9</td><td>18</td><td>6.1</td><td>10.7</td><td>19.5</td></th<>	Chromium		30	210	130000	1500000	10.6	7.8	12.7	16.2	23.7 J	11.8 J	9.3 J	18 J	19.3	14.3	14.9	18	6.1	10.7	19.5
Image Image <th< td=""><td>Copper</td><td></td><td>36000</td><td>100000</td><th>190000</th><td>41000</td><td>4.5 J</td><td>5.6 J</td><td>16.9 J</td><td>14.3 J</td><td>6.4</td><td>9.4</td><td>5.3</td><td>2.8 B</td><td>8.8 J</td><td>7.7 J</td><td>9.6 J</td><td>17.8 J</td><td>21.5 J</td><td>19.7 J</td><td>3.9 J</td></th<>	Copper		36000	100000	190000	41000	4.5 J	5.6 J	16.9 J	14.3 J	6.4	9.4	5.3	2.8 B	8.8 J	7.7 J	9.6 J	17.8 J	21.5 J	19.7 J	3.9 J
	Lead		450	1000	190000	800	5.2	4.5	18.2	27.1	8.6	11.8	9.4	10.4	10	8.5	8	12.5	17.7	23.6	9.4
She She <td>Nickel</td> <td></td> <td>650</td> <td>56000</td> <th>190000</th> <td>20000</td> <td>5</td> <td>6</td> <td>7.8</td> <td>18.2</td> <td>23.5</td> <td>7.9</td> <td>6.2</td> <td>8.8</td> <td>9.5</td> <td>7.7</td> <td>7.6</td> <td>14.3</td> <td>8.8</td> <td>21.4</td> <td>8.6</td>	Nickel		650	56000	190000	20000	5	6	7.8	18.2	23.5	7.9	6.2	8.8	9.5	7.7	7.6	14.3	8.8	21.4	8.6
Name No. No. <td>Silver</td> <td></td> <td>84</td> <td>14000</td> <th>190000</th> <td>5100</td> <td>0.56 U</td> <td>0.56 U</td> <td>0.65 U</td> <td>0.64 U</td> <td>0.067 B</td> <td>0.12 B</td> <td>0.62 U</td> <td>0.11 B</td> <td>0.62 U</td> <td>0.63 U</td> <td>0.63 U</td> <td>0.072 B</td> <td>0.66 U</td> <td>1.2 U</td> <td>0.62 U</td>	Silver		84	14000	190000	5100	0.56 U	0.56 U	0.65 U	0.64 U	0.067 B	0.12 B	0.62 U	0.11 B	0.62 U	0.63 U	0.63 U	0.072 B	0.66 U	1.2 U	0.62 U
Open Proc. Proc. Proc. Proc.	Thallium		14	200	190000	66	1.1 U	1.1 U	1.3 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2 U	1.3 U	1.3 U	1.3 U	1.3 U	2.5 U	1.2 U
Product Total Product	Vanadium		72000	20000	190000	5200	9.5	8.4	10.2	11.3	22.1	16.8	13	9.4	20.5	15	15.7	17.3	10.1	13.9	19.2
Sector Sector<	PCB		12000	190000	190000	310000	13.8 J	10 J	18.6 J	28.1 J	16.4 J	19.4 J	14.1 J	31.6 J	22.9 J	19.8 J	19.2 J	24.7 J	15 J	46.5 J	16.1 J
Decision Dia Solution	Arochlor-1016		200	200	10000	21	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Arochlor-1221		2.5	160	10000	0.62	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Control B Control Cont	Arochlor-1232		2	160	10000	0.62	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Deter: Deter:<	Arochlor-1242		67	44	10000	0.74	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Description 1900	Arochlor-1254		280	44	10000	0.74	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Distribution Distribution<	Arochlor-1260		1900	130	190000	0.74	0.019 U	0.018 U	0.022 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.021 U	0.022 U	0.022 U	0.021 U	0.02 U
Decomposent iso iso <th< td=""><td>1.2.4-Trichloreborg</td><td>rene</td><td>27</td><td>10000</td><th>10000</th><td>400</td><td>0.3711</td><td>0.3711</td><td>0.4311</td><td>0.4211</td><td>0.411</td><td>0.4111</td><td>0.4111</td><td>0411</td><td>0.4111</td><td>0.4111</td><td>0.4211</td><td>0.4311</td><td>0.4311</td><td>0.4111</td><td>0.4111</td></th<>	1.2.4-Trichloreborg	rene	27	10000	10000	400	0.3711	0.3711	0.4311	0.4211	0.411	0.4111	0.4111	0411	0.4111	0.4111	0.4211	0.4311	0.4311	0.4111	0.4111
D.3.Decompany H 1000 1000 1000	1,2-Dichlorobenzer	10	60	10000	10000	10000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
1.4 Deficiency 1.5 Deficiency 1.5 Deficiency 1.6 Deficiency 0.6 Def	1,3-Dichlorobenzer	ne	61	10000	10000	3066	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Diab Diab <thdiab< th=""> Diab Diab <thd< td=""><td>1,4-Dichlorobenzer</td><td>ne</td><td>10</td><td>3300</td><th>190000</th><td>13</td><td>0.37 U</td><td>0.37 U</td><td>0.43 U</td><td>0.42 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.42 U</td><td>0.43 U</td><td>0.43 U</td><td>0.41 U</td><td>0.41 U</td></thd<></thdiab<>	1,4-Dichlorobenzer	ne	10	3300	190000	13	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
L. Doctopped J. No. NO. O. J.	2,4,5-1 richloropher 2 4 6-Trichloropher	101	6100	190000	190000	160	0.37 U	0.37 U	0.43 U	0.42 U	0.40	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
DAD-Scriptord BOD 1990 1990 0.070 0.370	2,4-Dichlorophenol		2	8400	190000	1800	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
2.2-Description 4.1 990 1000 1010	2,4-Dimethylpheno	1	200	10000	10000	12000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Display Display <thdisplay< th=""> <th< td=""><td>2,4-Dinitrophenol</td><td></td><td>4.1</td><td>5600</td><th>190000</th><td>1200</td><td>1.8 U</td><td>1.8 U</td><td>2.1 U</td><td>20</td><td>1.9 U</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>2.1 U</td><td>2.1 U</td><td>20</td><td>20</td></th<></thdisplay<>	2,4-Dinitrophenol		4.1	5600	190000	1200	1.8 U	1.8 U	2.1 U	20	1.9 U	20	20	20	20	20	20	2.1 U	2.1 U	20	20
Chonceptant 1990	2,4-Dinitrotoluene		10	2800	190000	2044	0.37 U	0.37 U	0.43 U	0.42 U	0.40	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Chargement 44 99 1100 1910 0.97 0.80 0.60 0.41 <	2-Chloronaphthaler	ne	18000	190000	190000	82000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Schultzeinschleine 990 1990 <td>2-Chlorophenol</td> <td></td> <td>4.4</td> <td>920</td> <th>1100</th> <td>5100</td> <td>0.37 U</td> <td>0.37 U</td> <td>0.43 U</td> <td>0.42 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.42 U</td> <td>0.43 U</td> <td>0.43 U</td> <td>0.41 U</td> <td>0.41 U</td>	2-Chlorophenol		4.4	920	1100	5100	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Debugsing DB TB TB DB TB DB DB <	2-Methylnaphthaler	ne	8000	10000	10000	4100	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Stategom 18 2000 100000 100000 100000 100000 100000 100000 100000 1000000	2-Metryphenor		0.58	160	190000	1800	18U	1.8 U	2111	211	190	211	211	211	211	211	211	210	210	211	211
3b-2-betrospecifie 92 190 190000 6.39911 1.0.U 1.0.U 1.0.U 2.0.U	2-Nitrophenol		82	22000	190000		0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Alternative State Under State State Under	3,3'-Dichlorobenzid	line	32	180	190000	6.35911	1.8 U	1.8 U	2.1 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U	2 U	2.1 U	2.1 U	2 U	2 U
Debending UNID UNID UNID LAU LAU LAU LAU <th< td=""><td>3/4-Metnyiphenoi 2 Nitroanilino</td><td></td><td>0.59</td><td>160</td><th>100000</th><td>5100</td><td>0.37 0</td><td>0.37 0</td><td>2.111</td><td>0.42 0</td><td>1.011</td><td>0.41 U</td><td>0.41 0</td><td>0.4 0</td><td>0.41 0</td><td>0.41 0</td><td>0.42 0</td><td>0.43 U</td><td>0.43 U</td><td>0.41 0</td><td>2.11</td></th<>	3/4-Metnyiphenoi 2 Nitroanilino		0.59	160	100000	5100	0.37 0	0.37 0	2.111	0.42 0	1.011	0.41 U	0.41 0	0.4 0	0.41 0	0.41 0	0.42 0	0.43 U	0.43 U	0.41 0	2.11
Edmonschart ginner m. 0.37 U 0.43 U 0.43 U 0.44 U <th< td=""><td>4,6-Dinitro-2-Methy</td><td>/lphenol</td><td>0.50</td><td>100</td><th>130000</th><td></td><td>1.8 U</td><td>1.8 U</td><td>2.1 U</td><td>20</td><td>1.9 U</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>20</td><td>2.1 U</td><td>2.1 U</td><td>20</td><td>20</td></th<>	4,6-Dinitro-2-Methy	/lphenol	0.50	100	130000		1.8 U	1.8 U	2.1 U	20	1.9 U	20	20	20	20	20	20	2.1 U	2.1 U	20	20
Checkbool 110 10000 10000 0.37U 0.37U 0.42U 0.44U 0.44U 0.44U 0.41U <	4-Bromophenyl phe	enyl ether					0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Backbanne St. 1000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1	4-Chloro-3-Methyl-	Phenol	110	14000	190000	1000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Internation 0.88 160 1900 96 1.8 U 1.8 U 2.0	4-Chlorodinhenvl F	ther	52	11000	190000	4088	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
e1Amoghend 6 2200 1900 18.0 18.0 18.0 21.0 2.0 <	4-Nitroaniline		0.58	160	190000	86	1.8 U	1.8 U	2.1 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U	2 U	2.1 U	2.1 U	2 U	2 U
Accessphere 4700 170000 190000 23000 137 U 0.37 U 0.42 U 0.41 U 0.42 U 0.43 U 0.42 U 0.43 U 0.42 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.42 U 0.43 U 0.42 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U	4-Nitrophenol		6	22000	190000		1.8 U	1.8 U	2.1 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U	2 U	2.1 U	2.1 U	2 U	2 U
Schmachen 350 199000 199000 199000 199000 137U 0.37U 0.42U 0.42U 0.4U 0.4U </td <td>Acenaphthene</td> <td></td> <td>4700</td> <td>170000</td> <th>190000</th> <td>33000</td> <td>0.37 U</td> <td>0.37 U</td> <td>0.43 U</td> <td>0.42 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.42 U</td> <td>0.43 U</td> <td>0.43 U</td> <td>0.41 U</td> <td>0.41 U</td>	Acenaphthene		4700	170000	190000	33000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Bincs (a) Anthracene 320 110 190000 2.1 0.37 U 0.43 U 0.44 U 0.41 U 0.43 U 0.41 U 0.43 U 0.41 U 0.	Anthracene		350	190000	190000	170000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Benco (b)Prome 46 11 190000 0.21 0.37 0.43 0.43 0.41	Benzo (A) Anthrace	ene	320	110	190000	2.1	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Description 100 10000 10000 10000 00100 0010 00100 0010 00100 0010 00100 0010 00100 0010 00100 0010 00100 0010 00100 00100 00100 00100 00100 00100 00100 00100 <	Benzo (a) Pyrene	hene	46	11	190000	0.21	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Benzo (h:Flucaminene 610 1100 190000 21 0.37 0.43 0.42 0.44 <th0.4< th=""> 0.44 0.44<td>Benzo (g,h,i) Pervle</td><td>ene</td><td>180</td><td>170000</td><th>190000</th><td>4.1</td><td>0.37 U</td><td>0.37 U</td><td>0.43 U</td><td>0.42 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.42 U</td><td>0.43 U</td><td>0.43 U</td><td>0.41 U</td><td>0.41 U</td></th0.4<>	Benzo (g,h,i) Pervle	ene	180	170000	190000	4.1	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Bit2/Chorentroy/Methane Image: Additional State Image: Additional State O.42 U O.42 U O.41 U O.41 U O.41 U O.41 U O.42 U O.41	Benzo (k) Fluoranti	hene	610	1100	190000	21	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
openct_schemptering 0.092 2 5.2 0.92 0.45/U 0.45/U 0.45/U 0.45/U 0.45/U 0.41/U 0.41/U 0.42/U 0.41/U 0.41/U 0.42/U 0.41/U 0.41/U 0.42/U 0.41/U 0.41/U 0.42/U 0.41/U 0.41/	Bis(2-Chloroethoxy	r) Methane	0.055		67	1800	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Ball/E-Privacy0_Privacy0_Privacy0_Privacy0_0 120 0.37 U 0.55 0.45 1.2 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.42 U 1.19 0.14 U 0.41 U 0.41 U 0.41 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.41 U 0.42 U 0.42 U 0.43 U 0.41	Bis(2-Chloroisonroi	cuier ovi) Ether	30	5	5.7	0.9	0.37 U	0.37 U	0.43 U 0.43 U	0.42 U 0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U 0.41 U	0.41 U 0.41 U	0.42 U 0.42 U	0.43 U 0.43 U	0.43 U 0.43 U	0.41 U 0.41 U	0.41 U
Bayberxyphinate 10000 10000 10000 10000 10000 0.37U 0.37U 0.43U 0.46U 0.41U 0.41U 0.41U 0.41U 0.41U 0.41U 0.42U 0.42U 0.43U 0.41U	Bis(2-Ethylhexyl) P	hthalate	130	5700	10000	120	0.37 U	0.5	0.15 J	0.43	1.2	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	1.9	0.14 J	0.41 U	0.29 J
Lantacom S2 4000 190000 0.37 U 0.47 U 0.48 U 0.44 U 0.41 U 0.42 U 0.42 U 0.41 U	Butylbenzylphthala	te	10000	10000	10000	910	0.37 U	0.37 U	0.43 U	0.045 J	0.083 J	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.2 J	0.43 U	0.41 U	0.41 U
Description 1000 10000	Carbazole		83	4000	190000	210	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Oberacytorum Ost 0.42U 0.42U 0.41U 0.41U 0.41U 0.41U 0.41U 0.42U 0.42U 0.41U 0.41U 0.41U 0.41U 0.42U 0.42U 0.42U 0.42U 0.42U 0.41U 0.41U 0.41U 0.41U 0.42U 0.42U 0.43U 0.41U 0.41U 0.41U 0.41U 0.41U 0.42U 0.43U 0.43U 0.43U 0.41U 0.41U 0.41U 0.41U 0.41U 0.41U 0.42U 0.43U 0.43U 0.41U 0.42U 0.43U 0.43U 0.41U 0.41U 0.41U 0.41U 0.41U 0.41U 0.41U 0.42U 0.43U 0.43U 0.41U	Dibenzo (a,h) Anth	racene	160	11	190000	0.21	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Destrict/primate 500 10000 10000 0.37U 0.37U 0.42U 0.42U 0.41U 0.42U 0.42U 0.41U 0.42U 0.43U 0.41U	Dibenzofuran						0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Diethylphthalate		500	10000	10000	490000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Opcctp/pthulaim 100000 100000 100000 100000 100000 100000 1000	Di-n-Butylphinalate		4100	10000	10000		0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Fluoreme 3200 110000 190000 12000 0.37U 0.47U 0.42U 0.41U	Di-n-octylphthalate		10000	10000	10000		0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
public micro 3800 110000 110000 22000 0.37 U 0.37 U 0.42 U 0.44 U 0.41	Fluoranthene		3200	110000	190000	22000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Procession Procesi	Herachlorobon	•	3800	110000	190000	22000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Photochropychopentadiene 91 10000 10000 1700 18.U 18.U 2.U 2.U 19.U 2.U	Hexachlorobutadie	ne	1.2	560	10000	22	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Hexachioperhame 0.55 2800 190000 120 0.37 0.43 0.43 0.43 0.41	Hexachlorocyclope	ntadiene	91	10000	10000	3700	1.8 U	1.8 U	2.1 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U	2 U	2.1 U	2.1 U	2 U	2 U
momento (L2-cot) rytemie 22000 110 1100000 120000 1300 0.37 U 0.37 U 0.42 U 0.44 U 0.41 U 0.41 U 0.41 U 0.41 U 0.42 U 0.42 U 0.43 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.41 U	Hexachloroethane		0.56	2800	190000	120	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Structure S5 S6000 100000 20 0.037 0.037 0.037 0.027 0.042 0.41 0.41 0.41 0.41 0.42 0.421 0.421 0.41 0.41 0.421 0.421 0.421 0.41 0.41 0.421 <td>Indeno (1,2,3-cd) P</td> <td>yrene</td> <td>28000</td> <td>10000</td> <th>190000</th> <td>2.1</td> <td>0.37 U</td> <td>0.37 U</td> <td>0.43 U</td> <td>0.42 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.4 U</td> <td>0.41 U</td> <td>0.41 U</td> <td>0.42 U</td> <td>0.43 U</td> <td>0.43 U</td> <td>0.41 U</td> <td>0.41 U</td>	Indeno (1,2,3-cd) P	yrene	28000	10000	190000	2.1	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Ninconcerne 5.1 1400 10000 22 0.37 0.43 0.43 0.43 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.41 0.42 0.43 0.41 0.41 0.41 0.41 0.41 0.41	Naphthalene		25	56000	190000	20	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Networds-Nerbogelamine 0.037 11 10000 0.25 0.37 0.37 0.43 0.43 0.41 0.41 0.41 0.41 0.41 0.42 0.07 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.47 0.43 0.41 0.4	Nitrobenzene		5.1	1400	10000	22	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Verture Verture <t< td=""><td>N-Nitrosodi-N-Prop</td><td>ylamine</td><td>0.037</td><td>11</td><th>10000</th><td>0.25</td><td>0.37 U</td><td>0.37 U</td><td>0.43 U</td><td>0.42 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.4 U</td><td>0.41 U</td><td>0.41 U</td><td>0.42 U</td><td>0.075 J W</td><td>0.43 U</td><td>0.41 U</td><td>0.41 U</td></t<>	N-Nitrosodi-N-Prop	ylamine	0.037	11	10000	0.25	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.075 J W	0.43 U	0.41 U	0.41 U
Present/tree 10000 1900000 1	Pentachlorophenol	mille	03 5	660	190000	350	181	0.3/U 18U	0.43 U 2 1 U	0.42 U 2 U	191	2.0	2.0	211	211	211	0.42 U 2 U	2111	0.43 U 2 1 U	211	211
Phenol 400 190000 190000 0.37U 0.37U 0.4SU 0.4U 0.41U 0.4U 0.41U 0.4U 0.42U 0.4SU 0.4U	Phenanthrene		10000	190000	190000		0.37 U	0.37 U	0.43 U	0.42 U	0.03 J	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
Pyrene 2200 84000 190000 17000 0.37 U 0.37 U 0.43 U 0.42 U 0.4 U 0.41 U 0.41 U 0.41 U 0.41 U 0.42 U 0.43 U 0.43 U 0.41 U 0 Total Solids	Phenol		400	190000	190000	180000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
	Pyrene Total Calida		2200	84000	190000	17000	0.37 U	0.37 U	0.43 U	0.42 U	0.4 U	0.41 U	0.41 U	0.4 U	0.41 U	0.41 U	0.42 U	0.43 U	0.43 U	0.41 U	0.41 U
	Percent Solids																				

Location/ID	MSC	MSC	MSC	EPA RBC	B41S-SB-001	B41S-SB-002	B41S-SB-003	B41S-SB-003	B41S-SB-004	B41S-SB-005	B41S-SB-005	B41S-SB-005	B41S-SB-006	B41S-SB-006	B41S-SB-006	B41S-SB-007	B41S-SB-007	B41S-SB-007	B41S-SB-008
Depth (ft.)	Soll to GW	Direct Contact	Direct Contact	industrial	2-4	1-3	2-4	5-7	1-3	1-3	4-6	4-6	1-3	4-6	4-6	1-3	4-6	8 - 10	1-3
Sample Date	Used Aquiter	0 - 2 ft	2 - 15 ft	Soil	2/7/2008	2/7/2008	2/7/2008	2/7/2008	2/8/2008	2/8/2008	2/8/2008	2/8/2008	2/7/2008	2/7/2008	2/7/2008	2/7/2008	2/7/2008	2/7/2008	2/7/2008
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
VOC	40	24.00	400000	0.0	0.0046.11	0.004611	0.0055.11	0.0055.11	0.0050.11	0.0056.11	0.005011	0.004011	0.005011	0.0052.11	0.005211	0.0050.11	0.211	0.0011	0.005.11
1,1,1,2-Tetrachioroethane	18	3100	190000	9.8	0.0046 U	0.0046 0	0.0055 U	0.0055 U	0.0052 0	0.0056 U	0.0052 0	0.0049 0	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
1,1,1-Tricnioroetnane	20	10000	10000	39000	0.0046 U	0.0046 U	0.0055 U	0.0055 0	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 0	0.28 U	0.005 U
1,1,2,2-Tetrachioroethane	0.03	20	33	2.9	0.0046 0	0.0046 0	0.0055 0	0.0055 0	0.0052 0	0.0056 0	0.0052 0	0.0049 0	0.0052 0	0.0053 0	0.0053 0	0.0059 0	0.3 0	0.28 0	0.005 0
1,1,2-Tricnioroetnane	0.5	100	120	5.5	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 0	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
1,1-Dichloroethane		1000	1200	1/	0.0046 0	0.0046 0	0.0055 0	0.0055 0	0.0023 J	0.0056 0	0.0052 0	0.0049 0	0.0052 0	0.0053 0	0.0053 0	0.0059 0	0.3 0	0.28 0	0.005 0
1,1-Dichloroethene	0.7	33	38	0.47	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
1,2-Dibiomoeunane	0.005	0.93	0.0	0.17	0.0046 0	0.0046 0	0.0055 0	0.0055 0	0.0052 0	0.0056 0	0.0052 0	0.0049 0	0.0052 0	0.0053 0	0.0053 0	0.0059 0	0.3 0	0.28 U	0.005 0
1,2-Dichloroetnane	0.5	63	73	2.2	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
1,2-Dichloropropane	0.5	160	160	4./	0.0046 0	0.0046 0	0.0055 0	0.0055 0	0.0052 0	0.0056 0	0.0052 0	0.0049 0	0.0052 0	0.0053 0	0.0053 0	0.0059 0	0.3 0	0.28 0	0.005 0
1,4-Dioxane	2.4	210	240	160	0.93 U	0.92 U	1.10	1.1 U	10	1.10	10	0.99 U	10	1.1 U	1.1 U	1.2 U	59 U	56 U	0.99 U
2-Butarione	560	10000	10000	190000	0.019 0	0.018 0	0.022 0	0.022 0	0.0059 J	0.023 0	0.0210	0.02 0	0.021 0	0.021 0	0.021 0	0.024 0	0.21 J	1.10	0.02 0
2-Hexanone		4200	4000	E0000	0.019 U	0.018 U	0.022 U	0.022 U	0.021 U	0.023 U	0.021 U	0.02 U	0.021 U	0.021 U	0.021 U	0.024 U	1.20	1.1 U	0.02 U
4-Methyl-2-Pentanone	41	4300	4900	52000	0.019 0	0.018 U	0.022 U	0.022 0	0.021 0	0.023 U	0.021 0	0.02 0	0.021 U	0.021 0	0.021 0	0.024 0	1.2 U	1.1 U	0.02 0
Acetone	1000	10000	10000	610000	0.006 J	0.018 U	0.0089 J	0.0065 J	0.052	0.023 0	0.011 J	0.02 0	0.021 0	0.00/1 J	0.0055 J	0.014 J	0.078 J	1.1 U	0.0076 J
Acrylonitrile	0.27	24	28	1.2	0.093 U	0.092 0	0.11 U	0.11 0	0.1 0	0.11 U	0.1 0	0.099 0	0.1 U	0.11 U	0.11 U	0.12 0	5.90	5.6 U	0.099 U
Benzene	0.5	210	240	5.6	0.0046 U	0.0046 U	0.0055 U	0.0055 0	0.0052 0	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 0
Bromochloromethane	9	10000	10000		0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Bromodichloromethane	10	45	51	1.4	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Bromotorm	10	1500	1700	220	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Bromomethane	1	270	300	35	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Carbon Disulfide	410	10000	10000	3000	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0042 J	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Carbon Tetrachloride	0.5	110	120	1.3	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Chlorobenzene	10	10000	10000	1500	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0013 J	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0026 J	0.3 U	0.28 U	0.005 U
Chlorodibromomethane	10	61	70		0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Chloroethane	90	10000	10000		0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Chlorotorm	10	17	19	1.5	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Chloromethane	0.3	920	1000	510	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
cis-1,2-Dichloroethene	7	1900	2100		0.0019 J	0.0046 U	0.0016 J	0.035	0.12	0.0031 J	0.0033 J	0.0026 J	0.0052 U	0.0053 U	0.0053 U	0.1	13 W	5.5	0.18
cis-1,3-Dichloropropene	2.6	410	470		0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Etnyidenzene	/0	10000	10000	29	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0028 J	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0058 J	U.7	0.28 U	0.005 U
Methyl tert-butyl ether	2	3200	3700	190	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Methylene chloride	0.5	3500	4000	54	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0017 J	0.0024 J B	0.0016 J	0.0017 J B	0.0013 J	0.0053 U	0.0053 U	0.0059 U	0.055 J B	0.28 U	0.001 J
Styrene	24	10000	10000	38000	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Tetrachloroethene	0.5	1500	3300	27	0.0046 U	0.0046 U	0.0024 J	0.015	0.0064	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.017	51 WZ	4.1 W	0.019
Toluene	100	10000	10000	46000	0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.011	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.004 J	0.06 J	0.28 U	0.005 U
trans-1,2-Dichloroethene	10	3700	4300		0.0046 U	0.0046 U	0.0014 J	0.0055 U	0.012	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0027 J	0.3 U	0.28 U	0.0074
trans-1,3-Dichloropropene	2.6	410	470		0.0046 U	0.0046 U	0.0055 U	0.0055 U	0.0052 U	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	0.3 U	0.28 U	0.005 U
Trichloroethene	0.5	970	1100	14	0.0046 U	0.0046 U	0.0012 J	0.0047 J	0.0038 J	0.0056 U	0.0052 U	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.0059 U	8.9 WZ	1.1 W	0.015
Vinyl Chloride	0.2	53	220	1.7	0.012	0.0046 U	0.0042 J	0.024	0.63 W	0.003 J	0.0019 J	0.0049 U	0.0052 U	0.0053 U	0.0053 U	0.027	0.3 U	0.28 U	0.0071
Xylenes (Total)	1000	10000	10000	2600	0.014 U	0.014 U	0.016 U	0.016 U	0.0097 J	0.017 U	0.016 U	0.015 U	0.015 U	0.016 U	0.016 U	0.014 J	1.5	0.84 U	0.015 U

Laboratory Qualifiers Qualifier Explanation

- counter	Explanation
	Organic Data Qualifiers
J	Indicates an estimated value. This flag is used when the data indicates the presence of a compound that meets the identification oriteria but the result is less than the sample quantitation limit but greater than zero.
В	Analyte is found in the associated blank, as well as in the sample.
	Indicates sample was analyzed for, but not detected. Report with th
U	detection limit value.
	Inorganic Data Qualifiers
J	Analyte is found in the associated blank, as well as in the sample.
В	Indicates an estimated value. This flag is used when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
E	Matrix Interference
U	Indicates sample was analyzed for, but not detected. Report with th detection limit value.

Screening Value Comparison Qualifiers

- 11	Qualifier	Explanation
		Soils
	w	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Soil to Groundwater (are the greater of the "100 X GW MSC" and "Generic" regulation values).
	x	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Direct Contact 0' to 2' below ground surface.
	Y	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Direct Contact 2' to 15' below ground surface.
	7	Excedence of the United States EPA Region 3 Risked Based Concentrations for Industrial soil. Per EPA, for certain low-toxicity chemicals, the screening levels exceed possible concentrations at th farent risks.

 NOTES:

 RBCs - Risk Based Concentrations from: United States Environmental Protection Agency (EPA), May 19, 2009; Regional Screening Level Table.

 MSCs - Medium Specific Concentrations from: Protection (DEP), November 24, 2001; from Chapter 250, Appendix A.

 1 - EPA has indicated that for certain low-toxicity chemicals, the screening levels exceed possible concentrations at the target risks.

Location/ID	MSC	MSC	MSC	EPA RBC	B41S-SB-009	B41S-SB-010	B41S-SB-012	B41S-SB-013	B41S-SB-014	B41S-SB-014	B41S-SB-014	B41S-SB-014	B41S-SB-015	B41S-SB-S4N-06	6 B41S-SB-S4N-07	B41S-SB-S7N-11	B41S-SB-S7N-14	B41S-SB-S7N-16
Depth (ft.) Sample Date	Soil to GW	Direct Contact 0 - 2 ft	2 - 15 ft	Industrial	0 - 2	0 - 2 2/8/2008	0-2 2/8/2008	0 - 2 2/8/2008	3 - 5 5/13/2008	8 - 10 5/13/2008	11 - 13 5/13/2008	14 - 16 5/13/2008	4 - 6 5/13/2008	3 - 6 4/2/2008	6 - 7 4/2/2008	10 - 12	13 - 14 4/2/2008	15 - 16
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Cyanide, Free																		
Cyanide, Free	200	56000	190000	20000	1	0.63 U	0.6 U	0.65 U	0.16 B J	0.18 B J	0.18 B J	0.24 B J	0.26 B J	0.64 U	0.61 U	0.62 U	0.62 U	0.63 U
Cyanide, Total	200	56000	100000		15.2	0.66	0.62 P	0.77	0.6211	0.69.11	0.6211	0.12 P	10	0.6411	0.79	0.6211	0.6211	0.6211
Hexavalent Chromium	200	30000	130000		10.5	0.00	0.33 D	0.77	0.05 0	0.30 0	0.03 0	0.13 B	1.5	0.04 0	0.70	0.02.0	0.02 0	0.03 0
Hexavalent Chromium	190	420	190000	200	0.49 U	122	0.46 U	0.51 U	0.5 U	0.45 U	0.5 U	0.49 U	0.62	0.5 B	0.22 B	0.16 B	0.51 U	0.29 B
Mercury			100000		0.000 B 1					0.000 D		0.000 D	0.005 D					0.000 D
Mercury Metal	10	840	190000	24	0.039 B J	0.04 B J	0.037 B J	0.056 J	0.031 B	0.032 B	0.017 B	0.033 B	0.035 B	0.044	0.045	0.043	0.02 B	0.033 B
Antimony	27	1100	190000	410	0.14 B	1.3 U	1.2 U	1.3 U	1.3 U	1.2 U	1.3 U	0.11 B	1.2 U	1.3 U	1.2 U	1.2 U	2.5 U	2.5 U
Arsenic	150	53	190000	1.6	2.4 Z	1.4	1.3	1.3	4.7 Z	4.7 Z	11.1 Z	4.9 Z	11.1 Z	4.8 Z	3.1 Z	2.1 Z	5.3 Z	5.3 Z
Barium	8200	190000	190000	190000	39.1 J	39.6 J	25.8 J	31.5 J	45.4	31	25.3	34	41.5	108	66.5	34.1	56.7	50.4 B
Cadmium	320	210	190000	2000	0.36 B	0.32 B	0.33 B	0.29 B	0.62	0.85	0.44 B	0.92	10.1	0.56	0.39 B	0.52 0.18 B	2.5 0.63 B	2.1 0.87 B
Chromium		210	150000	1500000	12.3 J	20.6 J	51.5 J	82.7 J	9 J	13.5 J	10.7 J	12.8 J	24.2 J	15.1 J	10.1 J	6.4 J	13 J	13.3 J
Copper	36000	100000	190000	41000	5.4	5.3	5.6	7.7	9.8	11.8	21.1	10.3	6.4	2.4 B	1.4 B	6.7	19.6	16.5
Lead	450	1000	190000	800	8.4	7.1	9.6	8.3	15.6	13.9	27	16.4	12.1	14.3	7.5	14.2	30.2	29.9
Selenium	26	14000	190000	5100	0.61.11	0.6311	21.4	29.0	0.6311	0.47 B	0.4 J	15.5 J 0.36 B	22.2 J	0.6411	0.61 U	0.6211	34.6	1311
Silver	84	14000	190000	5100	0.61 U	0.63 U	0.6 U	0.65 U	0.63 U	0.58 U	0.63 U	0.61 U	0.61 U	0.17 B J	0.61 U	0.62 U	1.2 U	1.3 U
Thallium	14	200	190000	66	1.2 U	1.3 U	1.2 U	1.3 U	0.4 B	0.5 B	0.42 B	0.57 B	1.2 U	1.3 U	1.2 U	1.2 U	0.87 B	2.5 U
Vanadium	72000	20000	190000	5200	15.9	15.4	15	13.9	14.5	18.3	19	14.5	19.7	24	18.9	7.2	18.3	15.6
ZINC PCB	12000	190000	190000	310000	14.9 J	21.2 J	33.4 J	52.2 J	19	25	44.3	51.2	129	13.8	10.7	15.2	108	62.1
Arochlor-1016	200	200	10000	21	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					
Arochlor-1221	2.5	160	10000	0.62	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					
Arochlor-1232 Arochlor-1242	2 62	160	10000	0.62	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					
Arochlor-1248	67	44	10000	0.74	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					
Arochlor-1254	280	44	10000	0.74	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					
Arochlor-1260	1900	130	190000	0.74	0.02 U	0.021 U	0.02 U	0.022 U	0.021 U	0.019 U	0.021 U	0.02 U	0.02 U					1
1 2 4-Trichlombenzene	27	10000	10000	400	0411	0.4211	0.411	0.4311	0.411	0.3811	0.4111	0.411	0411	0.4211	0411	0411	0.4111	0.4211
1,2-Dichlorobenzene	60	10000	10000	10000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
1,3-Dichlorobenzene	61	10000	10000	3066	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
1,4-Dichlorobenzene	10	3300	190000	13	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2,4,5-Trichlorophenol	6100	190000	190000	160	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 0	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2,4-Dichlorophenol	2	8400	190000	1800	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2,4-Dimethylphenol	200	10000	10000	12000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.055 J	0.41 U	0.052 J
2,4-Dinitrophenol	4.1	5600	190000	1200	20	20	1.9 U	2.1 U	1.9 U	1.9 U	2 U	20	1.9 U	20	20	20	20	20
2,4-Dinitrotoluene 2.6-Dinitrotoluene	10	2800	190000	620	0.4 U	0.42 U	0.40	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2-Chloronaphthalene	18000	190000	190000	82000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2-Chlorophenol	4.4	920	1100	5100	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
2-Methylnaphthalene	8000	10000	10000	4100	0.4 U	0.42 U	0.4 U	0.43 U	0.11 J	0.38 U	0.41 U	0.4 U	0.4 U	0.038 J	0.037 J	0.53	0.038 J	0.6
2-Nitroaniline	0.58	160	190000	1800	2 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	2 U	1.9 U	2.0	2 U	2 U	2 U	2 U
2-Nitrophenol	82	22000	190000		0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
3,3'-Dichlorobenzidine	32	180	190000	6.35911	2 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U
3/4-Methylphenol 3-Nitroaniline	0.58	160	190000	5100	0.12 J	211	1911	2 1 11	1911	1911	211	211	1911	211	211	0.052 J	0.41 0	0.052 J
4,6-Dinitro-2-Methylphenol	0.50	100	130000		20	20	1.9 U	2.1 U	1.9 U	1.9 U	20	20	1.9 U	20	20	20	20	20
4-Bromophenyl phenyl ether					0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
4-Chloro-3-Methyl-Phenol	110	14000	190000	4000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
4-Chlorodiphenvl Ether	52	11000	190000	4000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
4-Nitroaniline	0.58	160	190000	86	2 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U
4-Nitrophenol	6	22000	190000		2 U	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	2 U	1.9 U	2 U	2 U	2 U	2 U	2 U
Acenaphthene	4700	170000	190000	33000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.03 J
Anthracene	350	190000	190000	170000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Benzo (A) Anthracene	320	110	190000	2.1	0.4 U	0.42 U	0.4 U	0.43 U	0.064 J	0.046 J	0.044 J	0.043 J	0.056 J	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Benzo (a) Pyrene Benzo (b) Elugranthons	46	11	190000	0.21	0.4 U	0.42 U	0.4 U	0.43 U	0.059 J	0.039 J	0.029 J	0.034 J	0.059 J	0.42 U	0.4 U	0.016 J	0.41 U	0.014 J
Benzo (d) Fluoranmene Benzo (d.h.i) Pervlene	180	170000	190000	2.1	0.4 U	0.42 U	0.4 U	0.43 U	0.042 J	0.025 J 0.041 J	0.033 J	0.055 J 0.019 J	0.076 J	0.42 U	0.4 U	0.018 J	0.41 U	0.42 U
Benzo (k) Fluoranthene	610	1100	190000	21	0.4 U	0.42 U	0.4 U	0.43 U	0.044 J	0.028 J	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.014 J	0.41 U	0.42 U
Bis(2-Chloroethoxy) Methane				1800	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Bis(2-Chloroisopropyl) Ether	0.055	5	5.7	0.9	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U 0.4 U	0.4 U	0.41 U 0.41 U	0.42 U
Bis(2-Ethylhexyl) Phthalate	130	5700	10000	120	0.99	0.18 J	0.26 J	0.43 U	0.4 U	0.038 J	0.41 U	0.061 J	0.068 J	1.2	1.3	2.3	1.1	1.6
Butylbenzylphthalate	10000	10000	10000	910	0.066 J	0.42 U	0.4 U	0.43 U	0.038 J	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.087 J	0.41 U	0.044 J
Carbazole	83	4000	190000	210	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.028 J	0.41 U	0.42 U
Dibenzo (a.h) Anthracene	160	11	190000	0.21	0.4 U	0.42 U	0.4 U	0.43 U	0.076 J	0.045 J 0.38 U	0.041 J	0.044 J	0.000 J	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Dibenzofuran					0.4 U	0.42 U	0.4 U	0.43 U	0.029 J	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Diethylphthalate	500	10000	10000	490000	0.4 U	0.42 U	0.041 J	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Dimethylphthalate Di n Butulohthalate	4100	10000	10000		0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Di-n-octylphthalate	10000	10000	10000		0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.042 J	0.41 U	0.42 U
Fluoranthene	3200	110000	190000	22000	0.4 U	0.42 U	0.4 U	0.43 U	0.1 J	0.059 J	0.052 J	0.05 J	0.087 J	0.42 U	0.4 U	0.033 J	0.41 U	0.42 U
Fluorene	3800	110000	190000	22000	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.026 J	0.41 U	0.42 U
Hexachlorobutadiene	0.96	50	190000	1.1	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Hexachlorocyclopentadiene	91	10000	10000	3700	20	2 U	1.9 U	2.1 U	1.9 U	1.9 U	2 U	2 U	1.9 U	2 U	2 U	2 U	20	2 U
Hexachloroethane	0.56	2800	190000	120	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Indeno (1,2,3-cd) Pyrene	28000	110	190000	2.1	0.4 U	0.42 U	0.4 U	0.43 U	0.041 J	0.03 J	0.029 J	0.03 J	0.044 J	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Naphthalene	25	56000	190000	20	0.4 0	0.42 0	0.4 0	0.43 U	0.056 .1	0.38 U	0.41 U	0.4 0	0.4 U	0.42 0	0.4 0	0.4 0	0.410	0.42 0
Nitrobenzene	5.1	1400	10000	22	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
N-Nitrosodi-N-Propylamine	0.037	11	10000	0.25	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
N-Nitrosodiphenylamine	83	16000	190000	350	0.4 U	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Phenanthrene	10000	190000	190000	ð	0.038 J	0.42 U	0.4 U	0.43 U	0.078 J	0.018 J	0.41 U	0.027 J	0.031 J	0.42 U	0.4 U	0.031 J	0.41 U	0.032 J
Phenol	400	190000	190000	180000	0.15 J	0.42 U	0.4 U	0.43 U	0.4 U	0.38 U	0.41 U	0.4 U	0.4 U	0.42 U	0.4 U	0.4 U	0.41 U	0.42 U
Pyrene	2200	84000	190000	17000	0.4 U	0.42 U	0.4 U	0.43 U	0.074 J	0.033 J	0.035 J	0.034 J	0.058 J	0.42 U	0.4 U	0.027 J	0.41 U	0.42 U
Total Solids			· · · · ·															

				554 556	B / / 0 0 0 000					D.440.0D.044		D O. O. D	D.440.0D.040	D.440.00.0444.00		D. ((0 0 0 0 0) ((D O. O. D. O	
Location/ID	MSC Call to CM	MSC Direct Contract	MSC Direct Contract	EPARBU	B415-SB-009	8415-58-010	8415-58-012	8415-58-013	B415-SB-014	8415-58-014	B415-SB-014	8415-58-014	B415-SB-015	B415-SB-S4N-06	B415-SB-S4N-0/	B415-SB-S/N-11	8415-58-5/N-14	8415-SB-S/N-16
Depth (n.)	Soll to Gw	Direct Contact	Direct Contact	Industrial	0-2	0-2	0-2	0-2	3-5	0 - 10	11-13	14 - 16	4-0	3-6	6-7	10-12	13-14	13 - 16
Sample Date	Used Aquiter	0-210	2 - 15 ft	Soli	2/8/2008	2/8/2008	2/8/2008	2/8/2008	5/13/2008	5/13/2008	5/13/2008	5/13/2008	5/13/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008	4/2/2008
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1 1 1 2 Totrachloroothano	10	2100	100000	0.9	0.005211	0.005011	0.006111	0.0050.11	0.006211	0.004611	0.0055 11	1611	0.004711	0.2711	0.2711	0.2111	0.2711	0.211
1.1.1 Trichloroothano	20	10000	10000	20000	0.0053.0	0.0059 0	0.0051 U	0.0059.0	0.0052 U	0.0045 U	0.0055 0	1.50	0.0047 U	0.27 U	0.27 U	0.310	0.27 0	0.3 0
1 1 2 2-Tetrachloroethane	0.03	28	33	2.9	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.50	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 0	0.3 U
1.1.2 Trichlomothano	0.00	100	120	6.6	0.005211	0.0050 U	0.0061 U	0.0050 U	0.006211	0.0046 U	0.0055 U	1.50	0.0047 U	0.27 U	0.27 U	0.01 0	0.27 U	0.211
1 1-Dichloroethane	11	1000	1200	17	0.005311	0.005911	0.0051 U	0.0059 U	0.005211	0.0045 U	0.0055 U	150	0.0047 U	0.27 11	0.27 U	0.31 U	0.27 U	0.311
1 1-Dichloroethene	0.7	33	38		0.005311	0.0059 U	0.0051 U	0.005911	0.0052 U	0.0045 U	0.0036 1	1.50	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.311
1.2-Dibromoethane	0.005	0.93	8.6	0.17	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	150	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
1 2-Dichlornethane	0.5	63	73	2.2	0.005311	0.0059 U	0.0051 U	0.005911	0.0052 U	0.0045 U	0.0055 U	1.50	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.311
1.2-Dichloropropane	0.5	160	180	4.7	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	150	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
1.4-Dioyane	2.4	210	240	160	1111	1211	111	1211	111	0.911	1111	31011	0.9311	54.11	55.11	61 11	5311	6011
2-Butanone	580	10000	10000	190000	0.021.U	0.024 U	0.015 J	0.0044 J	0.021 U	0.018 U	0.022.11	0.52 J	0.019 U	0.31.1	0.28.1	0.36.1	0.31 J	0.39.J
2-Hevenone					0.02111	0.02411	0.0211	0.02411	0.021 U	0.018 U	0.02211	6111	0.01911	1111	1111	1211	1111	1211
4-Methyl-2-Pentanone	41	4300	4900	52000	0.021 U	0.024 U	0.02 U	0.024 U	0.021 U	0.018 U	0.022 U	61U	0.019 U	110	110	121	110	121
Acetone	1000	10000	10000	610000	0.037	0.019 J	0.098	0.049	0.013 J	0.018 U	0.0093 J	1.4.J	0.0047 J	110	110	120	110	120
Acrylonitrile	0.27	24	28	1.2	0.11.U	0.12.11	01U	0.12.U	01U	0.09.U	0.11.U	31.U	0.093.U	540	550	61U	53U	611
Benzene	0.5	210	240	5.6	0.0053.U	0.0059.U	0.0051 U	0.0059.U	0.0052 U	0.0045 U	0.0055 U	150	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3.U
Bromochloromethane	9	10000	10000		0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	150	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Bromodichloromethane	10	45	51	1.4	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Bromoform	10	1500	1700	220	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	150	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0311
Bromomethane	1	270	300	35	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Carbon Disulfide	410	10000	10000	3000	0.0048 J	0.0059 U	0.0072	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Carbon Tetrachloride	0.5	110	120	1.3	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Chlorobenzene	10	10000	10000	1500	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	0.45 J	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Chlorodibromomethane	10	61	70		0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Chloroethane	90	10000	10000		0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Chloroform	10	17	19	1.5	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Chloromethane	0.3	920	1000	510	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
cis-1,2-Dichloroethene	7	1900	2100		0.0021 J	0.061	0.0028 J	0.0059 U	0.034	0.067	0.25	1.5 U	0.0062	0.45	0.46	1.6	2.6	5.1
cis-1,3-Dichloropropene	2.6	410	470		0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Ethylbenzene	70	10000	10000	29	0.013	0.07	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	13	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Methyl tert-butyl ether	2	3200	3700	190	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Methylene chloride	0.5	3500	4000	54	0.0012 J	0.0019 J	0.0015 J	0.0015 J	0.0016 J B	0.0014 J B	0.0018 J B	0.42 J	0.00077 J	0.27 U	0.27 U	0.1 J	0.27 U	0.3 U
Styrene	24	10000	10000	38000	0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Tetrachloroethene	0.5	1500	3300	27	0.0053 U	0.0084	0.0028 J	0.0059 U	0.0052 U	0.12	0.25	2.1 W	0.0047 U	0.13 J	0.14 J	8.1 WZ	0.92 W	4.3 W
Toluene	100	10000	10000	46000	0.0053 U	0.0097	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	3	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
trans-1,2-Dichloroethene	10	3700	4300		0.0053 U	0.0035 J	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0035 J	1.5 U	0.0011 J	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
trans-1,3-Dichloropropene	2.6	410	470		0.0053 U	0.0059 U	0.0051 U	0.0059 U	0.0052 U	0.0045 U	0.0055 U	1.5 U	0.0047 U	0.27 U	0.27 U	0.31 U	0.27 U	0.3 U
Trichloroethene	0.5	970	1100	14	0.0053 U	0.0018 J	0.0023 J	0.0059 U	0.0052 U	0.05	0.18	1.5 U	0.0047 U	0.091 J	0.13 J	0.96 W	0.54 W	1.5 W
Vinyl Chloride	0.2	53	220	1.7	0.0014 J	0.013	0.0017 J	0.0059 U	0.026	0.0043 J	0.029	1.5 U	0.0047 U	0.088 J	0.27 U	0.31 U	0.27 U	0.068 J
Volance (Tetel)	1000	10000	10000	0000							1 0.047811				0.0011	0.0011		

4

Laboratory Qualifiers

Qualifier	Explanation
	Organic Data Qualifiers
J	Indicates an estimated value. This flag is used when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
в	Analyte is found in the associated blank, as well as in the sample.
U	Indicates sample was analyzed for, but not detected. Report with the detection limit value.
	Inorganic Data Qualifiers
J	Analyte is found in the associated blank, as well as in the sample.
В	Indicates an estimated value. This flag is used when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
E	Matrix Interference
	Indicates sample was analyzed for, but not detected. Report with the

Screening Value Comparison Qualifiers

Qualifier	Explanation
	Soils
w	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Soil to Groundwater (are the greater of the "100 X GW MSC" and "Generic" regulation values).
x	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Direct Contact 0' to 2' below ground surface.
Y	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Direct Contact 2' to 15' below ground surface.
z	Excedence of the United States EPA Region 3 Risked Based Concentrations for Industrial soil. Per EPA, for certain low-toxicity chemicals, the screening levels exceed possible concentrations at the larget risks.

- NOTES: RBCs Risk Based Concentrations from: United States Environmental Protection Agency (EPA), MSCs Medium Specific Concentrations from: Perpensylvania Department of Environmental Protection 1 EPA has indicated that for certain low-toxicity chemicalt

Table 2 Water Data Summary - Building 41 (B41) South Settling Basin Former York Naval Ordnance Plant - York, PA

					B ((0 0) 1/ 000					
Location/ID	MSC	MSC	Federal	EPA RBC	B41S-SW-009	MW-116	MW-116	MW-116	MW-116	MW-116
Sample Date	Used Aquiter	Non-Used Aquiter	MCL	Tap Water	2/8/2008	5/21/2008	5/21/2008	6/10/2008	9/3/2008	9/3/2008
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Cyanide, Free							1			
Cyanide, Free	200	200000	200	730	23	10 U			10 U	
Cyanide, Total								-		-
Cyanide, Total	200	200000			4500 W	3.6 B J			10 U	
Dioxane										-
1,4-Dioxane	24	240		6.1				22 Z		
Hexavalent Chromium										
Hexavalent Chromium	100	100000		110		50 U			0 U	
Hexavalent Chromium-Diss										
Hexavalent Chromium	100	100000		110			50 U			00
Mercury								-		-
Mercury	2	2000	2	0.57	0.24	0.2 U			0.2 U	
Mercury-Diss								-		-
Mercury	2	2000	2	0.57			0.2 U			0.2 U
Metal								-		-
Antimony	6	6000	6	15	40.2 WYZ	10 U			0.076 B	
Arsenic	10	10000	10	0.045	26 WYZ	10 U			10	
Barium	2000	2000000	2000	7300	213	26.8 B J			26.2	
Beryllium	4	4000	4	73	0.58 B	0.49 B J			1 U	
Cadmium	5	5000	5	18	1210 WYZ	0.51 B			0.44 B	
Chromium	100	100000	100		9190 WY	2.9 B			8.9 J	
Copper	1000	1000000	1300	1500	238 J	25 U			0.9 B	
Lead	5	5000	15		67.6 WY	3 U			0.28 B	
Nickel	100	100000		730	3530 WZ	19.4 B			18.6	
Selenium	50	50000	50	180	8	5 U			0.39 B	
Silver	100	100000		180	0.83 B	1.4 B			10	
Thallium	2	2000	2	2.4	10 U	10 U			0.099 B	
Vanadium	720	720000		180	129 Z	2.2 B			1.4 J	
Zinc	2000	2000000		10950	4640 J W	20.2 J			15.8	
Metal-Diss										
Antimony	6	6000	6	15			10 U			0.091 B J
Arsenic	10	10000	10	0.045			10 U			10
Barium	2000	2000000	2000	7300			25.7 B			25.1
Beryllium	4	4000	4	73			0.41 B J			10
Cadmium	5	5000	5	18			0.64 B			0.48 B
Chromium	100	100000	100				2.9 B			7.3 J E
Copper	1000	1000000	1300	1500			25 U			0.86 B
Lead	5	5000	15				3 U			0.12 B J
Nickel	100	100000		730			18.6 B			17.6
Selenium	50	50000	50	180			5 U			0.59 B
Silver	100	100000		180			1.5 B			10
Thallium	2	2000	2	2.4			10 U			0.092 B J
Vanadium	720	720000		180			3 B			0.58 B
Zinc	2000	2000000		10950			15.8 B J			16.3
PCB										
Arochlor-1016	7.2	7.2	0.5	0.96	0.38 U					
Arochlor-1221	5.2	5.2	0.5	0.0068	0.38 U					
Arochlor-1232	5.2	5.2	0.5	0.0068	0.38 U					
Arochlor-1242	5.2	5.2	0.5	0.034	0.38 U					
Arochlor-1248	1.4	1.4	0.5	0.034	0.38 U					
Arochlor-1254	1.4	1.4	0.5	0.034	0.38 U					1
Arochlor-1260	4.3	4.3	0.5	0.034	0.38 U					

Table 2 Water Data Summary - Building 41 (B41) South Settling Basin Former York Naval Ordnance Plant - York, PA

Location/ID	MSC	MSC	Federal	EPA RBC	B41S-SW-009	MW-116	MW-116	MW-116	MW-116	MW-116
Sample Date	Used Aquifer	Non-Used Aquifer	MCL	Tap Water	2/8/2008	5/21/2008	5/21/2008	6/10/2008	9/3/2008	9/3/2008
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ua/L)	(ua/L)	(ua/L)	(ug/L)	(ug/L)
SVOC	(5)	(3)	(3)	(**3*=/	(*:5:-)	(3/	(3/	(3/	(5)	(
1 2 4-Trichlorobenzene	70	7000	70	8.2	10011			9511	9611	1
1.2.4 menorobenzene	600	0000	600	370	28 1			9.5 U	9.611	-
1.3-Dichlorobenzene	600	00000	000	570	100 11			9.5 0	9.00	-
1,3-Dichlorobenzene	75	7500	75	0.42	100 U			0.511	3.00	
1,4-Dichlorobenzene	75	7500	75	0.43	100 0			9.5 0	9.6 U	
2,4,5-1 richlorophenol	10000	100000		3700	100 0			9.5 0	9.6 U	
2,4,6-1 richlorophenol	31	31000		6.1	100 U			9.5 U	9.6 U	
2,4-Dichlorophenol	20	2000		110	100 U			9.5 U	9.6 U	
2,4-Dimethylphenol	2000	2000000		730	100 U			9.5 U	9.6 U	
2,4-Dinitrophenol	41	410		73	500 U			48 U	48 U	
2,4-Dinitrotoluene	8.4	8400		73	100 U			9.5 U	9.6 U	
2,6-Dinitrotoluene	100	100000		37	100 U			9.5 U	9.6 U	
2-Chloronaphthalene	8200	8200		2900	100 U			9.5 U	9.6 U	
2-Chlorophenol	40	40		180	100 U			9.5 U	9.6 U	
2-Methylnaphthalene	2000	2000		2.3	100 U			9.5 U	9.6 U	
2-Methylphenol	5100	510000			100 U			9.5 U	9.6 U	
2-Nitroaniline	5.8	5.8		110	500 U			4811	4811	
2-Nitrophenol	820	820000			100 U			9.5 U	9.6 U	
3 3'-Dichlorobenzidine	5.8	3100		0.15	500 U			4811	4811	
3/4-Methylphenol	0.0	0100		0.10	150			9511	1139	-
2 Nitroopiling	E 0	E 0			50011			3.5 0	4911	
4.6 Disitise 0 Mathulahasal	5.0	5.0			500 U			48 U	40 U	
4,6-Dinitro-2-ivietnyiphenoi					500 0			48 0	46 0	
4-Bromophenyi prienyi ether	540	540			100 0			9.5 0	9.6 U	
4-Chloro-3-Methyl-Phenol	510	510			12 J			9.5 U	9.6 U	
4-Chloroaniline	410	410		0.34	100 U			9.5 U	0.53 J	
4-Chlorodiphenyl Ether					100 U			9.5 U	9.6 U	
4-Nitroaniline	5.8	5.8		3.4	500 U			48 U	48 U	
4-Nitrophenol	60	60000			500 U			48 U	48 U	
Acenaphthene	3800	3800		2200	100 U			9.5 U	9.6 U	
Acenaphthylene	6100	16000			100 U			9.5 U	9.6 U	
Anthracene	66	66		11000	100 U			9.5 U	9.6 U	
Benzo (A) Anthracene	3.6	11	0.2	0.029	100 U			9.5 U	9.6 U	
Benzo (a) Pyrene	0.2	3.8	0.2	0.0029	100 U			9.5 U	9.6 U	
Benzo (b) Fluoranthene	1.2	1.2		0.029	100 U			9.5 U	9.6 U	
Benzo (a.h.i) Pervlene	0.26	0.26			100 U			9.5 U	9.6 U	
Benzo (k) Eluoranthene	0.55	0.55		0.29	100 U			9511	9611	
Bis(2-Chloroethoxy) Methane				110	100 U			9511	9611	
Bis(2-Chloroethyl) Ether	0.55	55		0.012	100 U			9511	9611	
Bis(2-Chloroisopropyl) Ether	300	30000		0.012	100 U			9.5 U	9.611	-
Bis(2-Ethylboxyl) Phthalato	500	200	6	4.8	140 WYZ			211	9.00	-
Butulbonzulohtholoto	2700	230	0	4.0	10011			0.511	3.00	
Cerkerele	2700	2700			100 U			9.5 0	9.00	
Carbazole	130	1200		2.0	100 0			9.5 U	9.6 U	
Chrysene	1.9	1.9		2.9	100 0			9.5 0	9.6 U	
Dibenzo (a,h) Anthracene	0.36	0.6		0.0029	100 U			9.5 U	9.6 U	
Dibenzofuran					100 U			9.5 U	9.6 U	
Diethylphthalate	5000	1100000		29000	100 U			9.5 U	9.6 U	
Dimethylphthalate					100 U			9.5 U	9.6 U	
Di-n-Butylphthalate	10000	400000			11 J			9.5 U	9.6 U	
Di-n-octylphthalate	2000	3000			100 U			9.5 U	9.6 U	
Fluoranthene	260	260		1500	100 U			9.5 U	9.6 U	
Fluorene	1900	1900		1500	100 U			9.5 U	9.6 U	
Hexachlorobenzene	1	6	1		100 U			9.5 U	9.6 U	
Hexachlorobutadiene	1	1000			100 U			9.5 U	9.6 U	
Hexachlorocyclopentadiene	50	1800	50		500 U			48 U	48 U	
Hexachloroethane	1	100			100 U			9.5 U	9.6 U	
Indeno (1.2.3-cd) Pyrene	3.6	62		0.029	100 U			9.5 U	9.6 U	
Isophorone	100	100000		71	100 U			9.5 U	9.6 U	
Naphthalene	100	10000		0.14	100 U			9.511	9.611	
Nitrobenzene	51	51000		0.12	100 1			9.5 11	9.611	<u> </u>
N-Nitrosodi-N-Propylamine	0.37	370		3200.0	100 11			9511	1139	<u> </u>
N-Nitrosodiphonylamino	530	35000		14	100 U			9.50	9.00	├
Pentachlorophenel	330	1000	1	0.56	50011			9.0 0	3.0 0	<u>├</u>
Phononthropo	1100	1000		0.50	100 1			40 0	40 0	<u>├</u>
Phenal	1100	1100		44000	100 0			9.5 U	9.6 U	<u> </u>
Phenoi	4000	400000		11000	940			9.5 U	9.6 U	├ ─────
Pyrene	130	130		1100	100 U			9.5 U	9.6 U	1

Table 2 Water Data Summary - Building 41 (B41) South Settling Basin Former York Naval Ordnance Plant - York, PA

Location/ID	MSC	MSC	Federal	EPA RBC	B41S-SW-009	MW-116	MW-116	MW-116	MW-116	MW-116
Sample Date	Used Aquifer	Non-Used Aquifer	MCL	Tap Water	2/8/2008	5/21/2008	5/21/2008	6/10/2008	9/3/2008	9/3/2008
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOC										
1,1,1,2-Tetrachloroethane	70	7000		0.52	5 U	50 U			50 U	
1,1,1-Trichloroethane	200	2000	200	200	5 U	50 U			50 U	
1,1,2,2-Tetrachloroethane	0.3	30		0.067	5 U	50 U			50 U	
1,1,2-Trichloroethane	5	50	5	5	5 U	50 U			50 U	
1,1-Dichloroethane	110	1100		2.4	1.2 J	14 J			17 J	
1,1-Dichloroethene	7	70	7		5 U	46 J WY			40 J WY	
1,2-Dibromoethane	0.05	5	0.05	0.0065	5 U	50 U			50 U	
1,2-Dichloroethane	5	50	5	0.15	5 U	50 U			50 U	
1,2-Dichloropropane	5	50	5	0.39	5 U	50 U			50 U	
1,4-Dioxane	24	240		6.1	1000 U	10000 U			10000 U	
2-Butanone	4000	400000			13 J	500 U			500 U	
2-Hexanone					50 U	500 U			500 U	
4-Methyl-2-Pentanone	410	41000		2000	50 U	500 U			500 U	
Acetone	10000	100000		22000	120	500 U			500 U	
Acrylonitrile	2.7	270		0.045	100 U	1000 U			1000 U	
Benzene	5	500	5	0.41	5 U	50 U			50 U	
Bromochloromethane	90	90			5 U	50 U			50 U	
Bromodichloromethane	100	100		0.12	5 U	50 U			50 U	
Bromoform	80	8000		8.5	5 U	50 U			50 U	
Bromomethane	10	1000		8.7	5 U	50 U			50 U	
Carbon Disulfide	4100	4100		1000	31	50 U			50 U	
Carbon Tetrachloride	5	50	5	0.2	5 U	50 U			50 U	
Chlorobenzene	100	10000	100	91	5 U	50 U			50 U	
Chlorodibromomethane	80	8000			5 U	50 U			50 U	
Chloroethane	900	90000			5 U	50 U			50 U	
Chloroform	80	800		0.19	5 U	50 U			50 U	
Chloromethane	30	3000		190	5 U	50 U			50 U	
cis-1,2-Dichloroethene	70	700	70		8.4	1200 WXYZ			1100 WXYZ	
cis-1,3-Dichloropropene	26	2600			5 U	50 U			50 U	
Ethylbenzene	700	70000	700	1.5	11	50 U			50 U	
Methyl tert-butyl ether	20	200		12	5 U	50 U			50 U	
Methylene chloride	5	500		4.8	1.4 J	140 B WZ			50 U	
Styrene	100	10000	100	1600	5 U	50 U			50 U	
Tetrachloroethene	5	50	5		0.47 J Z	310 WXYZ			210 WXYZ	
Toluene	1000	100000	1000	2300	5 U	50 U			50 U	
trans-1,2-Dichloroethene	100	1000	100		2.2 J	50 U			50 U	
trans-1,3-Dichloropropene	26	2600			5 U	50 U			50 U	
Trichloroethene	5	50	5		1.1 J Z	570 WXYZ			480 WXYZ	
Vinyl Chloride	2	20	2	0.016	15 WYZ	37 J WXYZ			27 J WXYZ	
Xylenes (Total)	10000	180000	10000	200	1.4 J	150 U			150 U	

Laboratory Qualifiers Explanation Organic Data Qualifiers

Qualifier

	Organic Data Qualifiers
J	Indicates an estimated value. This flag is used when the data indicates the presence of compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
В	Analyte is found in the associated blank, as well as in the sample.
U	Indicates sample was analyzed for, but not detected. Report with the detection limit value
	Inorganic Data Qualifiers
J	Analyte is found in the associated blank, as well as in the sample.
В	Indicates an estimated value. This flag is used when the data indicates the presence of compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
E	Matrix Interference
U	Indicates sample was analyzed for, but not detected. Report with the detection limit valu

Screening Value Comparison Qualifiers

Qualifier	Explanation
	Water
W	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Non- Residential Used Aquifers.
х	Excedence of the Pennsylvania DEP Act 2 Medium Specific Concentration for Non- Residential Non-Used Aquifers.
Y	Excedence of the United States EPA Maximum Contaminant Level.
Z	Excedence of the United States EPA Region 3 Risked Based Concentrations for tap water. Per EPA, for certain low-toxicity chemicals, the screening levels exceed possible concentrations at the target risks.

APPENDIX A

Photographs

APPENDIX A – Photographs Building 41 – South Settling Basin

Photo 1 - Building 41, South Settling Basin looking west.

Photo 2 - Building 41, South Settling Basin looking at southern wall, and possible crack in basin floor.

Photo 3 - Building 41, Southern sections of East Basins

Photo 4 - Building 41, South Basin, looking east. Note soil boring locations in white paint on basin floor.

Photo 5 - Building 41, Soil boring 009 with black liquid in crushed stone sub-base.

Photo 6 - Building 41, Soil boring 011 with black liquid in crushed stone sub-base.

APPENDIX B

Historical Photographs and Drawings

Historical Photograph Summary

Photo 1 – Undated, believed to be the originally constructed Building 41 WWTP and open tanks circa early 1969 (following construction); view is looking southeast. Features in Photo 1 are consistent with 12-5-67 AMF Dwg 61-7-60000 (Figure 1). Note only one settling basin is visible and adjacent to a smaller treatment tank (both empty and all concrete, in-ground, open topped tanks).

Photo 2 - August 11, 1971 Aerial Photo (north orientation). The active railroad track and Building 10 are visible to the south of Building 41 (at center). A retaining wall is visible to the east of Building 41; and a fire water tank and pump house are visible to the west of Building 41. Two main wastewater tanks are visible to the north of Building 41. The northern-most tank is the main settling tank (now referred to as the South Settling Basin). West of this settling basin is a square tank, which is assumed to be the original sludge holding pit. The tank south of the settling basin is the original equalization (EQ) tank, reported to be approximately 12' wide x 20 feet long.

Photo 3 – February 9, 1972 photo. View looking Southwest toward north side of Bldg 41. Excavation for new EQ tank is shown in the foreground. Note that the two new settling basins have already been constructed and are filled with water.

Photo 4 - February 9, 1972 photo. View looking west, east of new settling basins. Note fire protection tank in background and absence of EQ tank.

Photo 5 – February 9, 1972 photo. View looking southwest along east side of new settling basins. Note large 30" diameter stormwater pipe in foreground.

Photo 6 - February 9, 1972 photo. View looking northeast from near north mandoor of WWTP building. Note former sump pad and excavation for new EQ tank.

Photo 7 – February 1972 photo. View looking west from east side of WWTP tanks. Note both former (original 4'x4') sump pads and excavation for new EQ tank. Original EQ tank is visible in background.

Photo 8 - February 1972 photo. View looking south from northeast corner of new Settling tanks. Note 30" diameter underground stormwater pipe and smaller sanitary pipe. Workers are standing on new base for pH adjustment tank.

Historical Photograph Summary

Photo 9 – February 1972 photo. View looking southwest from northeast corner of new Settling tanks. Note western WWTP building extension.

Photo 10 - March 1, 1972 photo. View looking west from east side of new EQ tank (inside of south settling tank appears to be asphalt coated).

Photo 11 – March 4, 1972 photo. View looking south from northeast corner of new settling basins.

Photo 12 - March 6, 1972 photo. View looking southwest toward the northeast corner of the EQ tank. The three pipes are presumed to be from Bldg 2 WW tank area. Rebar from Neutralization tank wall construction in background.

Photo 13 – April 3, 1972 photo. View looking west, east of new WW tanks for Bldg 41. Apparent sump/cover at northeast corner of WWTP building.

Photo 14 - April 3, 1972 photo. View looking north from WWTP roof at west side of new Flocculation tank.

Photo 15 – View looking north from WWTP roof at new Precipitation tank.

Photo 16 - April 12, 1972 photo. View looking north at west side of new settling basins.

Photo 17 – May 6, 1972 photo. View looking northwest from WWTP roof at new Precipitation and Flocculation tanks and equipment installation. North settling tank was empty.

Photo 18 - May 8, 1972 photo. View looking north from WWTP roof.

Photo 19 – May 8, 1972 photo. View looking northwest from WWTP roof at new Micro screen and effluent discharge point (northeast corner of Oxidation tank). Pipe trench is present on the right-hand side.

Photo 20 - Close-up of former micro screen equipment .

Photo 21 – Undated photo. View looking north from WWTP roof at new Microscreen installation. Pipe trench is present along east side of tanks and is partially covered and north settling basin is full.

Photo 22 - March 20, 1973 photo. View looking east to northeast from west side of new settling basins. Asphalt pavement is present around tanks.

Photo 23 – View of southeast corner of new EQ tank in operation (no date). Metal plates are present over pipe trench on the right side.

Photo 24 - View looking west to southwest from north side of north settling basin (no date).

Photo 25 – Undated photo. View looking south from northwest corner of settling basins.

Figure 1 – December 5, 1967 AMF drawing No. 61-7-60000 (Proposed New Waste Treatment Building 41 - east orientation). Note location of original Building 41 structure and outdoor treatment tanks. Sumps located on the northeast and northwest corners of the building connected to piping from Building 2 & 4 wastewater tanks, respectively. Also note discharge to stormwater manhole from northeast corner of lone settling basin. Obscured note on this drawing indicated that the settling basin measured 54' long by 14' wide; the EQ tank measured 20'L x 12'W; and the sumps each measured 4'x 4'.

Historical Drawings

Figure 2 – August 2, 1968 drawing with current WWTP outline shown in red. Note location of original lone settling basin, sumps, and northern corners of original WWTP Building.

Historical Drawings

Figure 3 – (1972?) drawing with outline of current WWTP shown in red. Note planned locations of settling basins; pipes from Bldgs 2 (east) & 4 (west); and location of sludge tank (W of North settling basin).

Historical Drawings

Figure 4 – June 20, 2007 proposed (existing) layout [J. Mark Systems] showing Bldg 41 wastewater tank area only. Note proposed use of northern settling basin with a new lamella clarifier; new location of sludge filter press (indoors); and existing sludge pit (west of settling basins). Building walls and current roof over the WWTP basins was constructed circa 1980, according to other available construction drawings.

APPENDIX C

Soil Boring Logs

5		Science Applica International Co An Employee-Owned	ations orporation Company	De sta statio			T.O.C.	L:WP\FORMS\BORING LOGS.XLS
Client Proje	: Harley Da ct No.: 001	SOIL BOR widson - Bidg 1 1633 - 00-5	ING LOG 41 South Settling Basin 7127-127	Location: HO- 846-58-001 Surface Elevation:				Page / of [
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
	Concre	te		(ED KE 305				
			Concrete Floor O-1'					
		Ф 3	Gravel Sub-buse 1'- 1'11''					Secola O4
			NG Recovery					P (047
3			3-3,3.10 VR a/1,	1.6				
			3.3 - 4.7 IDYR 5/1, CL Clay, vlow silt, moist, medium plusticity, Semi-dens	1.5				-
5		2/3	4.7 - 5 10XRS16. CL, clay maist, low plasticity, semi- dense. 25% sub rounda guartate, 23% fine to coarse sand	, , , , , , ,				
			Refusal e 5 'bgs					

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe 3'100	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	·····
Drilling Started: 217/08	Screen Type:			Date/Time:	
Drilling Completed: 217/08	Slot Size:			Notes: Backgrand 150	0,2
Well Construction:	Grout Type:	Qua	ntity:	Used puc (4") to theep	Had but of
Blown/Bailed Yield:				Geoproide area	·

5	AIE.	Science Applic International C An Employee-Owne	c ations c orporation d Company					L:\WP\FORMS\BORING LOGS.XLS
		SOIL BOR	RINGLOG	Boring/We	Il No.:		T.O.C.	Elev.:
Client Proje	t: Harky Dav ct No.: ØI-	(633 · 00- 5	1) South setting Bosin 5127-127	Location: Surface Ele	10 - 841 evation:	5-5B-007		Page \ of {
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Fee	Well Construction Details
B				PJD (SDKA) 305)				
		1. l / j	0-0.6 Concrete 06-1.7 Gravel 1.7.20 Clauded/10 B, Saturated GC gravely clay, no playthy, sub rounded gravel low dentity concretion of a color 2-2.8 - 10412 2/1, GC gravely Clay, saturated, sub rounded gravel, cirtus like oder, no plasticity	18.6		Breathing Zone Of C. Humer 1: 2 opm		Sample O-3 Q 1227
		0/3	Refusal @ 3.3' bgs No Recourry					

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprope 3' R.J	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EML	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2/7/08	Screen Type:			Date/Time:	
Drilling Completed: 3/7/0%	Slot Size:			Notes: PUC (4") used	to keep H, o at
Well Construction:	Grout Type:	Qua	intity:	of Geoptier Area	
Blown/Bailed Yield:				Buckson IID	0.5

ł

4	AIE	Science Applic International C	cations corporation d Company					L:\WP\FORMS\BORING LOGS.XLS
		SOIL ROE	RING LOG	Boring/We	I No.:		T.O.C.	Elev.:
Clien	+ Hede Davids	M-Sault Sch	Hige Resig	Location:	HD-BHIS-	SB-003		
Proje	ct No.: 01-1	33-00-51	-107	Surface El	evation:			Page 01 &
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
e				PID (ED KA 305)				
		Ø.2 3 3/3	0-05 Convete DS-2: Gravel 2-2.2 104R 2/1, CL. Black, Saturated, low density, clay. Micdium plasticity 3-3.2 SAME AS ABOVE, MOIST 3.2-4.9 254 5/3, CL, clay. Iow plusticity, dense, damp, citrus like oder, mottling iOVE 2/2 4.1-6 184R 5/6, CL, clay, low Plusticity, dense, damp, burning brokes-like oder, 104R 2/2 4.1-6 184R 5/6, CL, clay, low	29.7 29.3 20.9		C. Homer Bruthing Tone O: 9 ppm C. Home Breathings Zone O.8 Man		Sample O4 e 1323

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: George 3' Rol	Casing Type:			Filter Pack Type:	Quantity:
Logged By: Fail Wade	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: a)7/08	Screen Type:			Date/Time:	
	Slot Size:			Notes: Used 4" PVL to	Keep Ho out of
Well Construction:	Grout Type:	Qu	antity:	Geopidoe Aren	•
Blown/Bailed Yield:				PID Backgrund (D	.6 ppm

5		Science Applic International C An Employee-Owne	cations corporation d Company	Boring/We	<u></u>		T.O.C.	L:\WP\FORMS\BORING LOGS.XLS		
Client	:: Harley Dave ct No.: Ø/	SOIL BOI dson - Bidy 4 -1635-00-	RING LOG 1- South Settling Basin 5787-127	Location: HD- B4/S - S8-@@3 Surface Elevation:				Page 2 of 2		
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Fee	Well Construction Details		
•			6-9 SAME AS ABOVE	1,2						
		3/3						Sample 07 e 1337		
				1.6						
8				1.3				-		
q =	-			arian - S ara						
10										
								-		

Driller:	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size:	Casing Type:			Filter Pack Type:	Quantity:
Logged By:	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started:	Screen Type:			Date/Time:	
Drilling Completed:	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

5	AE	Science Applic International C	cations corporation d Company					L:\WP\FORMS\BORING LOGS.XLS
		SOIL BOF	RING LOG	Boring/We	II No.:	0.000011	T.O.C.	Elev.:
Client	t: Harley Da	vidson - Blog	41 South Setting Basin	Location: Surface El	HD- <i>B4</i> / evation:	5-53-009		Page (of
Proje	<u>ct no.: (<i>VI-1</i></u>	655-04-5		<u> </u>			et	
Fee		/ery		le ID Scree	hic	Well	h Fe	
epth	Blow	ecov t/ft)	Overburden/Lithologic	amp VA 3	3rap -og	Construction Graphic	Dept	Well Construction Details
	Counts	R (f	Description	CIG				
				(305)				
			0 10.5' Concrete				E	
			05-1.7 Gravel lager					
		n /					<u> </u>	
		0.3					—	
			1-2 1040 24 0 day					
			Saturated, med. plashirty,	12.2			E	
			Semi-June 2340.500 ansular cracel					Dample US
			2-2.6 INVE SHE CL. Mar.					
			dense, damp, low plasticity				E_	
_	-		L3% sub runded grave				E	
2								
[=			3-3.7 SAME AS	103			E	
		D.7/	ABOVE					
		3	Refusal @ 3.7'bss					
<u>ч</u> —		, -			1			-
	-							
5 -							—	4
	1							
_	-							
6								-
			<u> </u>		<u> </u>			1

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Georbe 3 Rods	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2/8/09	Screen Type:			Date/Time:	
Drilling Completed: 2/8/08	Slot Size:			Notes: Background PI	O D.Spor
Well Construction:	Grout Type:	Qua	antity:	4" PVL used to Ker	460 01 0A
Blown/Bailed Yield:				Geophia Location	

-	5		Science Applic nternational C An Employee-Owned	ations orporation d Company				TOC	L:\WP\FORMS\BORING LOGS.XLS	
	Client Projec	: Harley Danie St No.:	SOIL BOF Joan - S.Se	RING LOG HHINY Basin - Follow -Up	Location: HD - B415 SB - 54N Surface Elevation:			Page of /		
	Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details	
6					PID (1700) # 14999 0.8 Bockson					
<i>۲</i>			1.1/3	0-0.7- Concrete 0.7-19- Gravel - Remared 119-3 7.5 YR4/6, CL, Cluy, low plushicity, dense, domp	4.2 6.2					
د د			3/3	3-6 1048666, CL, Clay, low plasticity, Olense, hord, olamp	9.8 6.0 5.4				Sample C 6 Q 1050	
Q			1.2/3	6-6.6 SAME AS ABOVE 6.6-7.2 SAME AS ABOVE - med plesheity Refusal e 7.2' bgs	20, 4 21, 9				Sample e7 e 1054	
7										
12										
15										

Driller: Bobb, Lewis	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 4/2/05	Screen Type:			Date/Time:	
Drilling Completed: 4/2/05	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

5	ĂE.	Science Applic International C An Employee-Owner	ations orporation d Company				TOC	L:\WP\FORMS\BORING LOGS.XLS	
Client	t: Harley Davi ct No.: ØI-	SOIL BOF idson - Bldg 1633 - QQ	RING LOG 41 South Settling Basin - 5127-127	Location: HD - B 4/S-SB-005 Surface Elevation:			Page i of (
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details	
		@9/ 3	Q-Q.5 Concrete Q5-115 Gravel IS-118 104R 2/1, CL, Cloy, Schwated, semi-date, and to low plandy: LS90000 rounded gravel 18-2.4 104R 5/6, CL, Clay, damp. dense, low plashing	4. C				Sample 03 C 0825	
3 4 5		3/3	2395 215 angular gravit 3-6 10412 5/6, CL, (10), damp, deve, low plast., 2390 angular gravel, 10412 6/8, 10427/2 Mottling	1.00 3.1 5.00				Sample 06 p. C. 0840 Due e @853 HD-B415-3B-0005-01-1	

Driller: Chris Home	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoporte 3'Rod	Casing Type:	<u></u>		Filter Pack Type:	Quantity:
Logged By: モイル	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2 8/08	Screen Type:			Date/Time:	
Drilling Completed: >) 04</td <td>Slot Size:</td> <td></td> <td></td> <td>Notes: Backgrow PI</td> <td>D (D. 3 pom</td>	Slot Size:			Notes: Backgrow PI	D (D. 3 pom
Well Construction:	Grout Type:	Qua	antity:	44 pvc used to the	ep tha out
Blown/Bailed Yield:				of Geoprive Countil	×

5	AE.	Science Applic International C An Employee-Owne	cations corporation d Company				<u> </u>	L:WPIFORMSIBORING LOGS.XLS	
Client	: Horley D ct No.: (D)	SOIL BOI	RING LOG As 41 South Settling Busin -5127-127	Boring/We Location: Surface El	HD-B4IS HD-B4IS evation:	-58-006	Page of		
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details	
				PID (CD KE) 305					
		1.2/3	0-0.6 Concrete 0.6-1.6' Gravel 1.6-1.9 Glay 2 5/10B, CL, Clay, moist, low density, high plashicity, C390 sits rounded quarter plashicity, C390 sits rounded quarter plashicity, C390 sits rounded quarter lig-250 104R 5/6, CL, moist, sem- dense clay, med. plasticity, hard	1.4 1.6 1.7				Sanple 03 @ 1113	
		3 3	3-6 10412518, CL, Clay, medium ploshill, damp, dense, 2300 sub roundud quartzite fragments, 23% fine sand, 7.542 518 mottling	1.4				Somple (26 @1185 Dura HD BHIS-SB-0106-06 @1126	

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geographie 3' Rols	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMw	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 217)08	Screen Type:			Date/Time:	
Drilling Completed: 37107	Slot Size:			Notes: Used 4" BVC 4	ru Keep HaD
Well Construction:	Grout Type:	Qua	antity:	out of certainte an	20
Blown/Bailed Yield:				O.S Background PID	

~

4	A.E.	Science Applic International C	ations orporation d Company					L:\WP\FORMS\BORING LOGS.XLS
		SOIL BOR		Boring/We	ll No.:		T.O.C.	Elev.:
Clien	t: Harley Da	uidson - Bidge	11 South Settling Basin	Location:	HO-B415	-SB-QQ7		Barra / of 2
Proje	ct No.: 01-	1633-00-	5127-127	Surface El	evation:			Fage (01 0
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Fee	Well Construction
				PID ppm (EO-KR) 305				
		1/3 3/3	D-D.S Concrete 0.5-1.8 Gravel 1.8-2.6 104R2/1, CL, Saturatul, Iow density, and ploshing, C390 Sub rounded to war angler Stavel, citrus the oder 2.6-2.8 - 2.54 514, CL, silty Clay, damp, citrus the oder, Semi-dose, town plositicity, C390 SUP rounded gravi 3-3.4 SAME AS ABOVE 3.4-6 2.57 514, CL, silty Clay, dense, citrus title oder 1000 plustruity, 104R711 and 7.542 518 Mutting	73,3 226 146 447 118		C. Homer Breathing Zune I. I ppm		Sample Ø3 @ 1410 Sample Ø6 @ 1425

Driller: Chris Humer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe 3 Roll	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 27/0%	Screen Type:			Date/Time:	
Drilling Completed: 2/7/0%	Slot Size:			Notes: 4" PVC USN	to keep H2 0 out
Well Construction:	Grout Type:	Qua	antity:	of Generative area	
Blown/Bailed Yield:				Buckground PSD @	legam

5		Science Applic International C An Employee-Owned	ations orporation d Company		II No. 1		TOC		
Client	:: Harley Dau ct No.: <i>OI</i> -	SOIL BOR -idson - Bids -1633 -00-	KING LOG 41-South Settling Basin 5127-127	Boring/Well No.: Location:			Page 2 of 2		
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details	
			G-9 SAME AS ABOVE	1101		C. Homer Breathing Zoe 1.3 Rom			
		3 3		886					
¥								Simple 10 C 1507	
9				265				-	
		Q7/3		220					
			Refusal @ 9.7' bss						
								-	

Driller:	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size:	Casing Type:			Filter Pack Type:	Quantity:
Logged By:	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started:	Screen Type:			Date/Time:	
Drilling Completed:	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

4		Science Applic International C	ations orporation d Company					L:\WP\FORMS\BORING LOGS.XLS
				Boring/We	ll No.:		T.O.C.	Elev.:
Client	+ Harley Day	iduon - S. SA	HIMS Busin Follow up	Location: HD-B415-SB-S7N			- / - 4	
Proje	ct No.:			Surface Elevation:			Page / of (
Jepth Feet	Blow	Recovery ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
		H		PID (ppn) # 19999 Beckground 1:0				
		1.1/3	Concrete Grovel 1,9-2.3 -25¥3/2-GC. gravelly Clay, low plast, damp. Semi-donne (growtzike 10bA.	11.4 11.6 (met)				
		3/3	3-4,9 - Some as Above 10425/6 4,9-6 - 10425/6, low ploshith Semi-dense, damp, ch Clay, mottling (10425K, cf)	9,4 10,2 13.0				
		3/3	6-7 Stuff 7-9 IOYR 5/3, med plast. Semi- dense, maist clay, mottling Clayr. 5/8, 6/1	12.8 45.7 9.7 13.5				
		3/3	9-10 Sluff 10-12 SAME AS ABOVE	37. 1 19,4 13.8				Sample 11 @ 1207
		3/3	12-13.2 13.2-14 104R 514, CL, Clay, A moisture, staky, semi-dense med plast 14-15 104R414 SAME AS ABOVE	15,0 18,3 20,4 24,5				8 mple 14 @ 1209
		3/3	15-16 SAME AS ABOVE 16-18 SAME AS ABOVE - SATUR ATED 181 - END BORTAR					e 1214

Driller: Bobby Lewis	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 4/2/08	Screen Type:			Date/Time:	
Drilling Completed: 4/2/08	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qua	antity:		
Blown/Bailed Yield:					

\$	AE.	Science Applie International C An Employee-Owne	cations Corporation d Company					
Clien Proje	t: Harley Da ct No.: Øl-	SOIL BOI vidson · Bldg 1633- DO-	RING LOG 41 South Settling Basin 5127-127	Boring/Well No.: T.O.C. Elev.: Location: HD らりらっちらつのの Surface Elevation: Page of /				
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
		Q9 3	0-0.5 Concrete 0.5-1.6 Gravel 1.6-1.8 104R d/1. CL (10-11 Saturata), Semi-dense, L390 Sub agour gravel 1.8-25 104R 5/6, CC, Clay, Clang, dense, law plaintister, L390 fire saw Recourse of type 3-3.5 SAME AS Above Ribbun of Sext Refusal P 3.5 1355	2.7 1.7 2.5				Sample 03 @ 1550

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe 3' rods	Casing Type:			Filter Pack Type:	Quantity:
Logged By: とMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 3708	Screen Type:			Date/Time:	
Drilling Completed: 2/7/08	Slot Size:			Notes: Backgrund PJD	O.7 Don
Well Construction:	Grout Type:	Qua	antity:	4"PVC used to Kee	+1 U out at
Blown/Bailed Yield:				Geoprobe Location	•

5	AE	Science Applie International C	c ations Corporation d Company					L:\WP\FORMS\BORING LOGS.XLS
		SOIL BOI		Boring/We	II No.:		T.O.C.	Elev.:
Clien	t: Harley Dav	idson - Blue	+ 41 South Settling Basin	Location:	HO-B415	-38-009		_
Proje	ct No.: 01-	1633-00	-5127-127	Surface E	evation:			Page (of /
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
			D-0.9 Convete D-0.9 Convete 1.7 - 2.3 1042 2/1, CL Clay, saturated semiclar medican plashing, LS% Ongolar scored full in 2.3 - 2.7 1042 5/6, CL Clay, semi dense, ned plashily, septe like ode Refused @ 2.7' biss Hand cannot catch, keeper shi have sure to a cald act use Due to a f Somple area sot	Ause and an tog the matel son	a suit			H20 Sample H0 B415-SW-009-01-0 @ 1420 Sample 02 @ 1445
6	- - - -				5			-

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Hand Aver	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2/8/08	Screen Type:			Date/Time:	
Drilling Completed: 3/8/08	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qua	intity:		
Blown/Bailed Yield:					

4	AIE	Science Applic International C	cations Corporation					L:\WP\FORMS\BORING LOGS.XLS
				Boring/We	II No.:		T.O.C.	Elev.:
Cline			UI- South Settling Basin	Location:	HD-BHIS	-SB-010		
Broie	$\mathbf{ct} \mathbf{No} : \mathbf{n}$	-11.77 - 000	5001 2000	Surface El	evation:			Page of
		1035 00		c			ta l	
eel		≥		ID/ Tee	υ	18/+11	Fe	
L L		ove -		Sc	phi	Vven	닱	Well Construction
ept	Blow	t/ft)	Overburden/Lithologic	A am	al og	Granhic)ep	Details
ă	Counts	R (f	Description	00				
				PJU				
				ED RK 305				
			10-10.8 (parce 10	A=			E	
			o olo lonivere.					
			Q.8-1.5 Gravel (subrated)			F	
μ								Sample Q2
								01252
=								
			15.00 1010 21.01					
_	ł		is - d. w twike api cl,					
ə _			Cluy, saturated, semi-chense	15.8				
	-		medium plusticity, spotic					
			litte odr					
- <u> </u>	-		2.0 10 YR 5/8, Damp, Low					
-	4		plusticity sensidense,					
5 -			Consist like and seating	10.1				
	-		like odar, 7.5 5/6 moltlig					
_	-							
			Refusal @ 27 below Corr	y ke				
	4							
4								-
=	1							
	1						<u> </u>	
=	1		And all where PVC to k	second.			E	
5]		rule cale nor use the por	4.1.6.11		ant-		4
			riau - soturated gravel	In or falling	In, cal	9		
	1		Je PVC pust Grave				F	
	1							
	1							
6-	1						<u> </u>	
	1							1

Driller: Chris Hamer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Hand Auger	Casing Type:	_		Filter Pack Type:	Quantity:
Logged By: (MW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2 8/09	Screen Type:			Date/Time:	
Drilling Completed: 2/8/07	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qua	intity:		
Blown/Bailed Yield:					

			Science Applic nternational Co An Employee-Owned	ations orporation d Company					L:\WP\FORMS\BORING LOGS.XLS
			SOIL BOR	RING LOG	Boring/We	II No.:		T.O.C.	Elev.:
Cli	ent	: Horley Dav	idson - Bldf	41 South Setting Basin	Location:	HD - B41	S - 5B - 011		Domo Lof
Pr	ojec	t No.: 01-	1633-000	- 5127-127	Surface Elevation:				Page 1 01
Donth Foot		Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
					PIO ED KR 305				
				Concrete Floor O-1' Gravel SJS-base 1'-1.7 No recovery prefusal R 2.7 'bgs No sample taken at location					

Driller: Chris Home	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: Geoprobe 214"	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 2/8/08	Screen Type:			Date/Time:	
Drilling Completed: 2/8/08	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

4		Science Applic International C	cations Corporation						
	•••••••••••••••••••••••••••••••••••••••	An Employee-Owne		Borina/We	II No.:		T.O.C.	Elev.:	
Clien Proje	t: Harley D ct No.: 01	soil Bui avidson - Bi 1633-00-	100 41 Sorth Settling Basich 5127-127	Location: / Surface El	HD-B4/S evation:	-58-010	Page of		
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details	
				PED NA (ED NA) 305					
			0-0.5 - Concrete 0.5 - 1.5 Gravel 1.5 1040 21, CL, Schuckd, onel. plothill, schuckd, L390 5.2 Gravel, Clay 2.3 1040 5/4, CL, Clay, damp, seni-duse, low plothilly 2.6' Refusal Auser Keeps Slipping or Poch? Concrete ?	Q 8	13-e 4	thing Zone O gan		Sangle 03 @ /218	

Driller: C. Homer	Well Casing:	Dia.	То	Seal Typ e :	Quantity:
Drilling Type/Size: Hand Aver 214"	Casing Type:			Filter Pack Type:	Quantity:
Logged By: EMW	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 218/68	Screen Type:			Date/Time:	
Drilling Completed:	Slot Size:			Notes: PID Background	D. 3 pen
Well Construction:	Grout Type:	Qua	antity:	4" pre used to keep	the out of
Blown/Bailed Yield:				Lacohur use wet use	du chin sport

4		Science Applic International C	cations Corporation					L:\WP\FORMS\BORING LOGS.XLS_	
				Borina/We	No.:		T.O.C.	Elev.:	
.	4 1	SUIL BUI	ul South attling Basin	Location:	1-117-B415.	- SB-013			
Droid	It: Harky Da	112300 - NIUS	11 5001 2.1	Surface Elevation:			Page of		
FIOJE		1055 40-5		c			۲.		
Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Scree	Graphic Log	Well Construction Graphic	Depth Fee	Well Construction Details	
				(CORA)					
			0-1.0 Concrete 1-1.3 Gravel 1.3 - 1.7 104R 2/1, Moist, CL, Cluy, motion plantity, Stan deve 1.7 - 1.9 104R 5/6, CL, Clay deve dange two plants (19-104R 5/8, CL, Clay derse, dump, low plasticity, 104R 6/8 mottling, citrus 1140000 2.11 bys Refusel - Route 7. Augu Keeps SKippin,	4.00		Batting Zine O. J Ppn		Sanple Q2 Q 1245	

Driller: Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: + land Auger 2'4"	Casing Type:			Filter Pack Type:	Quantity:
Logged By:	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: a/1/04	Screen Type:			Date/Time:	
Drilling Completed: 3/8/07	Slot Size:			Notes: 4" Pur used to	kiep HLO out
Well Construction:	Grout Type:	Qua	antity:	of Augur Indian ella	int act with
Blown/Bailed Yield:				wetwar. PID Backs	rand Q. 2 pg-

İ
,

Science Applications International Corporation

-	L:\WP\FORMS\BORING LOGS.XLS										
ſ			SOIL BOF	RING LOG	Boring/Well No.: #> - 841- 58-E14 T.O.C. Elev .:						
	Client	+ Harley	Davidson		Location: Bid. 41						
	Droio	ct No :			Surface El	evation:			Page	of	ລ
	th Feet	Dec.	overy ()	Overburden/Lithologic	nple ID/ A Screen	iphic J	Well Construction	pth Feet	Well Co	onstr	uction
	ep	J191	trift trift		V/ an	j'a	Graphic	l le	ם	etails	5
	ŏ	younts	R (f	Description	<u> </u>		Graphie				
A				concret (0-5')							
\mathcal{O}				gravel SUL Gase of fill							
		H.C.			0.0		5 ge				
		+0 71"									
		70.66						<u> </u>			
7					0,0				-		
C		L	•					<u> </u>			
	_	Ruch 0-4						\square			
		1			ବ୍ ର						
		0.7/10									
		1 .0						<u> </u>			
4			4		0.0				-		
ſ				CL, clay 104+ 16,							
		z.5'		soft, moist, meet, ples.	X			\square			
					0.0						
	=	4.									
	=				7.3	1		—			
1		4							-		
Ø		1									
	-	-			0.0						
]									
		1					1				
		1	1	£ 1, c'ay, 10 yr 5/6,	1.1						
¥			4	St. My, med pl							
0	-										
	=	2.0'									
		11		- 1 Jana 1/152	1.	1					
		4.0		CI, Clay W/ graver (370	1 616						
	-	-	1	1045 3/6, Firm, moist			1				
		1		grandz Frays	X				4		
10	- 1	7			177				1		
	=	7				1					
		1			12.5						
		1									
	1 -	-	1		Inc						
17]			4.3				_		
10											

Driller: EE + S Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size: DT-54	Casing Type:			Filter Pack Type:	Quantity:
Logged By: AJS	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started: 1200	Screen Type:			Date/Time:	
Drilling Completed: 13.00	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

	Science Applications International Corporation An Employee-Owned Company SOIL BORING LOG Client: H.D. Project No.:			HD-B41-58-E14 Boring/Well No.: 58-14 T.O.C. Elev.:					
				Location: Blains 41 5 Surface Elevation:			Page Z of Z		
	Depth Feet	Zec. Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Construction Details
				moist 12-12,3					
F2		4″₄		CL. Clay, 1045/6 to 10457, mottled, firm, sl. moist, med pli	7.9 20.5 X 57.5				
14					74				
16				- finner	1.4 9.7				
,,2		ч _{/4}		57 6/3, wet, soft CL -lay wig row 1 After, med pl byr 5/6	57 X 14.8				
ıs				moist CL cky w/ granel, wet Soft, Ivn pl. 10yr 5/6	13,4 5.8				
20			-	Ende zoilgs	8.0 - 8.Q				
22									
ટ્ય		4							-

Zų

Driller: EEAS Chris Homer	Well Casing:	Dia.	То	Seal Type:	Quantity:						
Drilling Type/Size: DT-54	Casing Type:			Filter Pack Type:	Quantity:						
Logged By:	Well Screen:	Dia.	То	Static Water Level:							
Drilling Started: 1200	Screen Type:			Date/Time:							
Drilling Completed: 1300	Slot Size:			Notes:							
Well Construction: N/4	Grout Type:	Qu	antity:								
, Blown/Bailed Yield:											
	5	AIE.	Science Applic International C An Employee-Owne	cations orporation d Company					L:\WP\FORMS\BORI	NG LOGS.XLS	
---	------------	----------------------	---	---	--	----------------	---------------------------------	------------	------------------------	-------------	--
	Client	t: t ⁴ ,5	SOIL BOF	RING LOG	Boring/Well No.: HD -841-58- <i>६।इ</i> Т.O.C. Elev.: Location: Blding 41 S Surface Elevation: Page 1 of						
	Depth Feet	Blow Counts	Recovery (ft/ft)	Overburden/Lithologic Description	Sample ID/ OVA Screen	Graphic Log	Well Construction Graphic	Depth Feet	Well Constr Details	uction	
0				Concrata (05 gravel 9 Fi'll (.5-3'	<u>;</u>						
7			HandAuga	٢,							
د					tange 2.7 ppm to						
પ					3 1 (pm		•				
6		•		Hund Auger Refusal			- 22		4		
8				6 695					_		
		-							_	9	

Driller:	Well Casing:	Dia.	То	Seal Type:	Quantity:
Drilling Type/Size:	Casing Type:			Filter Pack Type:	Quantity:
Logged By: AJS	Well Screen:	Dia.	То	Static Water Level:	
Drilling Started:	Screen Type:			Date/Time:	
Drilling Completed	Slot Size:			Notes:	
Well Construction:	Grout Type:	Qu	antity:		
Blown/Bailed Yield:					

APPENDIX D

Well Construction Log for MW-116

Log of Monitoring Well MW-116

(Page	1	of	1)
-------	---	----	----

	Former York Naval Ordnance Plant Supplemental RI 1425 Eden Road, York, PA SAIC Project #01-1633-00-9806-200		Drilling Company Drilled By Logged By Drilling Method Total Depth of Borin			: Eichelbergers, Inc. : Carey Knaub : Steve McFeaters : Air Rotary : 50.8' bgs	Drilling Bit Diameter: 8" to 50.8' bgsDrilling Started: 4/15/08Final Completion: 4/17/08Well Construction: 2" Schedule 40 PVCWell Development: 5/6/08		
Depth in Feet	DESCRIPTION	GRAPHIC	Fractures	DID DId	Depth in Feet	Well: MW-116 Elev. 364.59:	Depth in Feet	Well Construction Information	
0-	Asphalt		,		0-		0-		
	CL, silty clay, 10YR 4/2 dark grayish brown, moist, medium plasticity			0.0		Completion		Date Compl. : 4/17/08 Total Depth of Well : 50.8' bgs	
5-	ML, clayey silt, 10YR 6/4 light yellowish brown, moist, low plasticity, some sub rounded gravel			0.0 0.0	5—		5-	WELL CASING Material : Sch. 40 PVC Riser Diameter : 2" From : 0.5' - 30.8' bgs	
10-	CL, silty clay, 10YR 5/4 yellowish brown, moist, medium density, low to medium plasticity			0.0	10-	Grout	10-	WELL Screen Material : U-Pack Slot Size : 0.010"	
15-	Same As Above, with sub angular quartzite gravel				15-	2" PVC Biser	15-	Diameter : 2" From : 30.8' - 50.8' bgs	
	CL, silty clay, 10YR 5/3 brown, moist, medium density, low to medium plasticity			0.0				Type : #1 Morie Sand Amount : 10, 50 lb bags BENTONITE	
20-	CL, silty clay, 10YR 5/4 yellowish brown, slightly wet, medium plasticity			0.0	20-	-3/8" Hole Plug	20-	Type : 3/8" Hole Plug Amount : 2, 50 lb bags GROUT	
25-	Cuttings wet at 22' bgs CL, silty clay, 10YR 5/6 yellowish			0.0	25—		25-	Amount : 1, 50 lb bags	
30-	plasticity			0.0	30-		30-	WELL COVER Type : Locking Flush Mount	
	weathered Phylite			0.0				Notes: 8" Drilling (0 - 50.8' bgs)	
° 35—				0.0	35—		35-	Bentonite Seal (12' - 27' bgs) 2.5, 50 lb bags	
40-	Competent Limestone with quartz WBZ at 38' bgs, >2 gpm			0.0	40-	Sand U-Pack Screen	40-	MW-116 was constructed with U-Pack well screen and conventional sand pack.	
45-				0.0	45-		45-	Three attempts were made to construct MW-116, resulting in the final construction as described above.	
				0.0				Static water level 18.65' below top of inside casing on 5/6/08.	
50-	END OF BORING @ 50.8' BGS				50-		50-		
55-					55-		55-		

APPENDIX E

Groundwater Sampling Log

From Science to Solutions

GROUNDWATER SAMPLE LOG

Project Name:	Harley-Da	vidson - Supplemental RI
Project Number:	01-163	33-00-9806-200
Sampled by:	JSB	&
Checked by:		&

Well Identification:	Mw-116	
Project Location:	York, PA	
Date: 5-21-08		
Date:		

WELL VOLUME CALCULATION:

Circle diameter and K used below:	1" I.D., K=0.041 gal/ft
	2" I.D., K=0.163 gal/ft
	4" I.D., K=0.653 gal/ft
	5" I.D., K=1.02gal/ft
1 Well Volume:	

6" I.D., K=1.469 gal/ft 8" I.D., K=2.61 gal/ft 10" I.D., K=4.08 gal/ft

1 Well Volume:

[Total Depth (_____ft) - Depth to Water (___/6 -09 ___ft)] x K gal/ft = _____gallons

PURGE INFORMATION:

	Temp.	pН	Turb.	Cond.	D.O.	Sal	PR	PV	D.T.W.	Comments
Time	°C	s.u.	NTU	mS/cm	mg/L		gal/min	gallons	feet	
0900	17.2	6.15	-5	(. 72	7.10	ຸບອ	.35	1.75	16.09	(07.9 HZ
0905	17.7	6.42	709	1.66	.78	- 08	.25	83	16.32	106.7 42
0916	18.3	6.51	387	1.65	.75	ුරුව	.25	4.25	(6.36	
6915	18.5	6.50	263	1.66	. 77	08	.25	5.50	16.59	
0920	18.5	6.48	277	1.65	.66	, OB	.25	6.75	16.40	
0925	18.5	6.48	187	1.64	.59	.08	-25-	8	16.41	
0930	18.5	6.49	144	1.64	. 57	.08	.25	9.25	16.41	
0935	(8.5	6.49	173	1.64	.55	.08	.25	10.50	16.42	
0940	18.5	6.48	139	1.64	.54	.08	.25	u.75	16.42	
0945	18.5	6.48	129	1.64	.54	.08	. 25	13	16.41	
0950	18.6	6.48	111.7	1.64	-54	.08	.25	14.25	16.41	
0955	18.6	6.48	81.4	(-64	.53	.08	.25	15.50	16.37	
(000)	18.6	6.47	59.5	1.64	.51	.08	.25	16.75	16.40	
1005	18.5	6.48	58.6	1-64	.52	.08	. 25	18	16.42	* FLUSHED CEL
1010	18.5	6.48	42-7	1.63	.59	.08	.25	(9.25	16.43	
1015	18.4	6.34	0	1.64	.54	.08	. 25	20.50	16.44	
1020	18.5	6.74	0	1-64	.50	-08	. 25	21.75	16.44	
1025	18.5	6.57	o	1.64	. 49	-08	. 25	23	16.45	
1030	18.5	6.39	0	1.64	.49	.08	.25	24.25	16.45	
								ļ	16.45	

SAMPLING INFORMATION:

Time/Date Start	ed:/o	30	5-21	-08
Sampled by:	22B	&		_
Sampling WL:	16.45			(ft)
Pump Depth:	38		_(ft)	

Pump Type and ID: 2" Grundfos # 16110 Water Quality Instrument: Horiba U-22 # /6 358 Results to be Sent to: Todd Eaby

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

.

GROUNDWATER SAMPLE LOG										
Project Name	Harley-	Davidson	- Supple	mental RI		Well Ide	ntification:	- MW	· 116	
Project Numb	er: 01-	1633-00-9	806-200		•	Project L	ocation:	York, P/	Ą	
Sampled by:	MI		&			Date:	6.10.0	80		
Checked by:			&			Date:				
			N:	14-0.044		e" [
Circle diamete	er and Ki	isea pelo		<u>K=0.041</u>	gai/π	0 I.L 0" I.E	J., K=1.40	9 gai/n		
				K=0.163		0 I.L 10" I	D K=2.01	gai/it 8 gal/ft		
			5" I D	K=1.02c	ial/ft	10 1		o gaint		
1 Well Volum	۵.		0 I.D.	, 11-1.025	jan/it					
Total Depth (50	ft) - D(enth to W	ater (\7	67 f	t)] x K dal	/ft = 53) az	allons	
		() D(<u> </u>	()] A IX gai		9		
									Top of	
PURGE INFO	RMATIO	N:		-					<u>drive ou</u>	e(
	Temp.	рН	Turb.	Cond.	D.O.	Sal	PR	PV	D.T.W.	Comments
Time	°C	s.u.	NTU	mS/cm	mg/L		gal/min	gallons	feet	
6840	\8.8	6.51	-2	2.06	1.39	0.10	0.33			
0845	18.8	6.56	-5	1.59	0.39	10.07	-		18.34	
0850	18.7	6.39	30)	1.50	0.47	0.07			18.36	
0855	18.8	6.35	311	1.48	0.54	007			18.36	
0900	8.8	6.35	131	1.46	15.0	0.07			18.37	
0905	0.91	6.35		1.48	0.59	0.07			18.36	
0110	18.8	6.37	83.1	1.47	0.62	6.07	0.22		18.37	
0915	19.0	6.37	76.4	1.45	0.50	0.07			18.35	
0930	18.9	6.36	69.2	1.44	0.47	0.07			18.37	
0922	19.1	6.37	56.6	1.43	0.35	TO.0			18.38	
0930	1.9	6.38	37.1	24.1	0.42	0.07			18.37	
0935	19.1	6.37	39.3	1.44	0.32	<i>10.0</i>			18.38	
0940	0.11	6.36	39.2	1.44	0.30	0.07			18.37	
SAMPLING II Time/Date Sta Sampled by: _ Sampling WL	NFORMA arted:	TION: 0940 18.37	<u> </u>	0.08		Pump Ty Water C Results	ype and IE Quality Inst to be Sen	0: <u>2" Grun</u> rument: <u>h</u> t to: <u>To</u>	Ha h dfo s # Horiba U-2 odd Eaby	<u>6361</u> 2# <u>16358</u>
Pump Depth:	38	<u></u>	(ft)							

ADDITIONAL INFORMATION: (i.e. weather conditions, problems encountered, maintenance required, unusual color/odor, etc.)

Groundwater Sample Log

Sampling Event: HD Sup RI GW Rnd 2Project NO:01-1633-00-9806-200

Well ID:MW-116Project Location: York, Pa

Foject Location: 10rk, Pa

Purge Information

Purge Date:9/3/2008Purged By:Matthew LoganPurge Technique:Matched Well YeildPurge Method:Fultz Pump

Pump ID:16389Water Quality Inst:Horiba-U22Water Quality Inst ID:15073Total Purge Vol (gal):12.00

Sample Information

Sampled By:Matthew LoganSample Date:9 /3 /2008Sample Time:11:12Sample ID:HD-MW-116-01-0

hod: Fultz Pump
89
Not Collected
Not Collected

Purge Parameter Information

Time	°C ℃	рН SU	Turb NTU	Con. mS/cm	DO mg/L	Sal	Pr g/m	Pv gal.	DTW feet	Notes
10:32	19.51	5.66	-5	2.37	1.88	0.11	0.23			
10:37	18.28	6.06	-5	2.14	0.39	0.1			21.72	
10:42	17.98	6.01	163	1.56	0.08	0.07	0.33		21.8	
10:47	18.04	5.96	90.5	1.55	0	0.07			21.75	
10:52	18.06	5.93	72.3	1.53	0	0.07	0.33		21.75	
10:57	18.02	5.93	58.5	1.49	0	0.05			21.76	
11:02	17.99	5.94	42	1.49	0	0.07	0.33		21.77	
11:07	17.96	5.95	34.6	1.47	0	0.07			21.77	
11:12	17.95	5.97	27.1	1.46	0	0.07			21.76	

APPENDIX F

Waste Disposal Documentation

Р	lease p	rint or type. (Form designed for use on e	lite (12-pitch) typewriter.)					For	m Approved		2050 000	
	UNIFORM HAZARDOUS 1. Generator ID Number			2. Page 1 of	2. Page 1 of 3. Emergency Response Phone			4. ManifestTracking Number				
	5. Generator's Name and Mailing Ardress		11	(877)-818	000	006	6660) (VAS			
	Harley-Davidson Motor Co. Ops In				Generator's Site Addres	s (if different	than mailing addr	955)				
1425 Eden Road, York PA 17402											t.	
	Generator's Phone: (717)-848-1177											
	6. Tr	ansporter 1 Company Name	······································				U.S. EPA ID	Number				
	Envirite of Pennsylvania, Inc.						PAD010154045					
	7. Tr	7. Iransporter 2 Company Name						Number				
	R De	8 Decimpled Etallih Name and Cit. Add										
GENERATOR	Clean Harbors of Baltimore The						U.S. EPA ID	U.S. EPA ID Number				
	1910 Russell Street, Baltimore, MD 21220											
	Facility's Phone: $(410) - 244 - 8200$							00555	100			
	9a. 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number											
	НМ	and Packing Group (if any))			No.	Type	Quantity	12. Unit Wt.Vol.	13. \	Vaste Code	5	
	:	^{1.} RQ, NA3082, Hazarous	N.O.S.		TT	1320	G			·		
	XX	(Chrome, Lead) 72, 9, PG III						001	F001	F002	D007	
	i								D008	D027	D040	
									· · · · · · · · · · · · · · · · · · ·			
		3.	······································									
		· · · · · · · · · · · · · · · · · · ·										
		4.										
										·		
	14. Sp	ecial Handling Instructions and Additional Infor	mation									
	9al. Approval Code: CH3081628/B36B additional											
	Truck # PO # 3719-12421 ' Salas Order #											
	20 " 3/10-13431 Sales Order #											
	 GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable interactional and an end of the proper shipping name, and are classified, packaged, 											
Exporter, I certify that the contents of this consignment contions to the terms of the attached EPAAcknowledgment of Consent.									n the Primai	У		
	Genera	lor's/Offeror's Printed/Typed Name	entitieo in 40 CFR 262.27(a) (if I am a la	arge quantity genera Sional	erator) is true.							
4	Brenda M. Barber			Month Day						Year		
Ľ	16. International Shipments				11. Stenga 11 1 Oaler 105 13 08							
Z	Transporter signature (for exports only):							·				
E	17. Tran	sporter Acknowledgment of Receipt of Materials	5	······································								
B	Inanisponer i Prinied/Typed Name Month Day Ye									Year		
NS.	Transporter 2 Printed/Typed Name											
E		Month Day Year										
18. Discrepancy												
	18a. Dis	crepancy Indication Space										
			L Residue		L Panial Rejec	tion	L	Full Reject	ion			
-	18b Alternate Facility (or Generator) Manifest Reference Number:											
Ę	U.S. EPA ID Number											
Ξ	arility's Phone:											
<u> </u>	8c. Sigr	Bc. Signature of Alternate Facility (or Generator)										
WIL	Month Day Year											
	9. Haza	dous Waste Report Management Method Cod	les (i.e., codes for hazardous waste trea	itment, disposal, and	recycling systems)							
ΞļΊ	•	2.		3,		······	4.					
5	0. Desia	naled Facility Owner or Ocenter Ocello	of much of the second									
F	inted/Typed Name											
				June	-				Month I	Day	Year	
ΆF	orm 87	00-22 (Rev. 3-05) Previous editions are a	obsolete.		DESIGNATED	FACILIT	Y TO DEST	NATION	STATE /			
									ւ շերջաներու կել	إليا إيدست د	و فرتستية ع	