April 27, 2015

Ms. Sharon R. Fisher, CHMM Environmental Manager Harley-Davidson Motor Company Operations, Inc. 1425 Eden Road York, PA 17402

Re: First Year Progress Report of the Building 3 Footer Drain System Shutdown Monitoring Former York Naval Ordnance Plant (fYNOP) 1425 Eden Road, Springettsbury Township, York, Pennsylvania Project 10012.23

Dear Ms. Fisher:

The purpose of this letter is to provide the 2014 results of groundwater monitoring during shutdown of the Building 3 (Bldg3) Footer Drain System conducted by Groundwater Sciences Corporation (GSC) of Harrisburg, Pennsylvania. The Bldg3 Footer Drain System (System) is a groundwater collection system located beneath and adjacent to Harley-Davidson's manufacturing building at the former York Naval Ordnance Plant (fYNOP), 1425 Eden Road, Springettsbury Township, York, Pennsylvania (Site).

A report titled "Results of NPBA Extraction System and Bldg3 Footer Drain Monitored Shutdown Tests for Part 2 of the Supplemental Groundwater Remedial Investigation" (GSC 2014) provided recommendations to shut down the System because groundwater levels have never risen sufficiently to negatively impact Bldg3 and because chemicals of concern (COCs) have been undetected or detected at very low concentrations in samples from the System's pumping station. The report was submitted to the US Environmental Protection Agency (USEPA) and the Pennsylvania Department of Environmental Protection (PADEP) on April 11, 2014. The USEPA approved the shutdown of active pumping of the System and subsequent monitoring in an email reply to Mr. Stephen Snyder of GSC, dated April 17, 2014. The approved monitoring plan involves water level monitoring for two years, with preparation of a final report with recommendations after the second year of monitoring. This first-year progress report provides interim monitoring data for 2014.

BACKGROUND

Monitored shutdown testing of the Bldg3 Footer Drain System was performed as a component of the Part 2 Supplemental Groundwater Investigation (Part 2 SGWRI) from June 19, 2013 through November 25, 2013. Section 4.3.5 of the Field Sampling Plan (FSP) for the Part 2 SGWRI (GSC, 2012) and Addendum #7 to the FSP (GSC, 2013) describe the rationale and plan for evaluating the deactivation of the Bldg3 Footer Drain System. The pumping station, designated as the Bldg 3 Lift Station (formerly called Softail Lift Station), receives drainage from the Bldg 3 Footer Drain and formerly from a Toe Drain which collected drainage from the toe of the hill located east of Bldg 3, as described below and shown in **Attachment A**, Building 3 Footer Drain System Long-Term Monitoring Locations map.

In 2001, Harley-Davidson expanded its facility through the construction of a new production plant, designated as Bldg3. The construction included the installation of a groundwater collection system that includes the deep interceptor trench and drain (Footer Drain), a shallow interceptor trench (or Toe Drain), and a groundwater collection well (CW-19), located inside Bldg3.

All three components of the groundwater collection system were designed to lower the groundwater level beneath Bldg3, and direct flow to an underground collection tank (Lift Station) and then to the groundwater treatment facility located in Building 41. Groundwater collection via this system was initiated in March 2002. Refer to "Results of NPBA Extraction System and Bldg3 Footer Drain Monitored Shutdown Tests for Part 2 of the Supplemental Groundwater Remedial Investigation" (GSC, 2014) for details of the trench and lift station construction. The Footer Drain was constructed to be approximately 20 feet below the finished floor grade, and designed to intercept the water table. The Toe Drain next to the hillside was constructed approximately 6 feet below the finished floor grade, and designed to capture shallow groundwater flow that seasonally discharges at the base of the slope. Well CW-19 was installed in the event that groundwater would rise to a level of the sub-floor paint sludge tank. Refer to "Results of NPBA Extraction System and Bldg3 Footer Drain Monitored Shutdown Tests for Part 2 of the Supplemental Groundwater Remedial Investigation" (GSC, 2014) for details of the CW-19 was installed in the event that groundwater would rise to a level of the sub-floor paint sludge tank. Refer to "Results of NPBA Extraction System and Bldg3 Footer Drain Monitored Shutdown Tests for Part 2 of the Supplemental Groundwater Remedial Investigation" (GSC, 2014) for details of the CW-19 well construction. Installation of CW-19 was precautionary, with the depth of the well penetrating below the adjacent paint sludge pit, but above projected groundwater table elevations. Groundwater has never accumulated in well CW-19 and pumping of it has never been necessary.

RESULTS

The monitored System shutdown test was initiated and pumping of the Bldg3 Lift Station was stopped on June 19, 2013, and has remained inactive through the present time. An InSitu LevelTroll water level recorder has been automatically recording water levels in the Lift Station since May 24, 2013. Monthly downloads of the recorder and the collection of manual water level measurements from the Lift Station, Footer Drain Cleanouts 1 and 3 (FD1 and FD3), and well CW-19 began in July 2014 after allowing sufficient time for review of the shutdown testing results by PADEP.

The monthly manual water level measurements collected since the start of the System shutdown test are listed in **Attachment B**, Table 1. Manual water elevation measurements in the Lift Station ranged from 370.43 feet above mean sea level (amsl) on September 11, 2014 to 372.29 feet amsl on November 24, 2014. Well CW-19, with an invert elevation of 363 feet amsl, is located adjacent to the paint sludge pit beneath the western side of Building 3 and was drilled seven feet deeper than the paint sludge pit. Well CW-19 was dry during all monthly measuring events, nor did the automatic water level sensors in the well ever indicate that there was elevated groundwater in the well, and thus the groundwater elevation was below the elevation of the paint sludge pit as well. FD1, located outside the east side of Building 3, contained water twice during the 2014 monitoring period, on August 21 and on November 24, 2014, at elevations of 372.55 and 371.35 feet amsl, respectively, which is about 23 to 24 feet below the Building 3 floor elevation on the east side of the building. Those elevation of approximately 372.5 feet amsl, was dry during each measuring event. FD3 is located inside an active manufacturing area of Building 3 which was inaccessible for monitoring during some water level collection events.

Automatically recorded water level data measured in the Lift Station is shown on the hydrograph in **Attachment C**. Daily precipitation data from an on-site Davis Instruments wireless Vantage Pro2 weather station also has been added to the hydrograph (it should be noted that precipitation data shown from January 1, 2014 through April 20, 2014 was obtained from public data from the North Hills weather station in York, Pennsylvania due to data being over-written in the on-Site weather station memory during those months). The hydrograph shows that the water level in the Lift Station responds to

precipitation events, but water quickly drains out from the Lift Station into the surrounding subsurface material. The largest daily precipitation event was 2.03 inches in 2014 (on March 30) and the water elevation in the Lift Station rose to a maximum elevation of 374.13 feet amsl then quickly drained (see **Attachment C**).

The two-year planned monitoring period was to include a period of heavy precipitation outside of the growing season so that the potential effects of not pumping the lift station would be observed. Precipitation of approximately 2.5 inches or more in a 24-hour period would most likely be enough to adequately test the effects, however the weather conditions prior to a precipitation of that magnitude would also need to be considered in the analysis. A precipitation event occurred in October 9-11, 2013 when 6.4 inches of rain fell. Manual monitoring and inspection for seepage was not occurring at that time, but data from the automatic logger in the Lift Station can be used to predict the effects of future heavy precipitation events. The highest groundwater level recorded in the Lift Station to date occurred during that rainfall at 375.06 feet amsl on October 11, 2013. This groundwater elevation is about 20 feet lower than the top of the Lift Station and about 18 feet lower than the ground surface at the Lift Station. It is likely that any drainage from out of the Lift Station would dissipate in the subsurface before it would intersect with the ground surface and result in surface seepage. A ground surface elevation of 375 feet amsl (equal to the water elevation in the Lift Station on October 11, 2013) is located approximately 500 feet west of the Lift Station, at one of Harley-Davidson's water retention ponds. Subsurface drainage from the Lift Station is likely to dissipate in that 500-foot distance without surfacing. Observations will continue through 2015 to confirm this expectation.

A groundwater sample from the Lift Station was collected on October 23, 2014 and submitted to TestAmerica Pittsburgh Laboratory for analysis of volatile organic compounds. Laboratory results are summarized in **Attachment D**, Table 2, which includes all historical analytical data for the Lift Station. All COCs were below the laboratory detection limits in the annual sample collected in October.

In summary, groundwater elevation data from monitoring in 2014 indicates that there were no adverse effects to Bldg3 from shutdown of the Footer Drain System. Additionally, the laboratory analytical results continue to indicate that dissolved COCs in the water samples from the Lift Station have not become elevated as a result of shutdown of the System.

CONTINUED MONITORING FOR 2015

No changes are recommended to the planned monitoring program for the Bldg 3 Footer Drain System. The work plan for 2015 is to continue monitoring the effects of the System shutdown through the collection of monthly manual water level measurements from the Lift Station, well CW-19, FD1 and FD3, and to continue the automatic water level recording with monthly data downloads. Observations will be performed for evidence of water seepage down-gradient of the Lift Station. Automatic high water level sensors will remain functional in well CW-19 during the monitoring efforts in 2015. A period of heavy precipitation outside of the growing season of approximately 2.5 inches or more in a 24-hour period did not occur during the monitoring period in 2014. Assuming that heavy precipitation occurs in 2015, a final report of results of the two-year monitoring program will be prepared in the first quarter of 2016 with recommendations of future plans for the Bldg3 Footer Drain System. However, if heavy precipitation does not occur outside of the growing season, the 2015 progress report will likely include a recommendation to continue monitoring.

GROUNDWATER SCIENCES CORPORATION

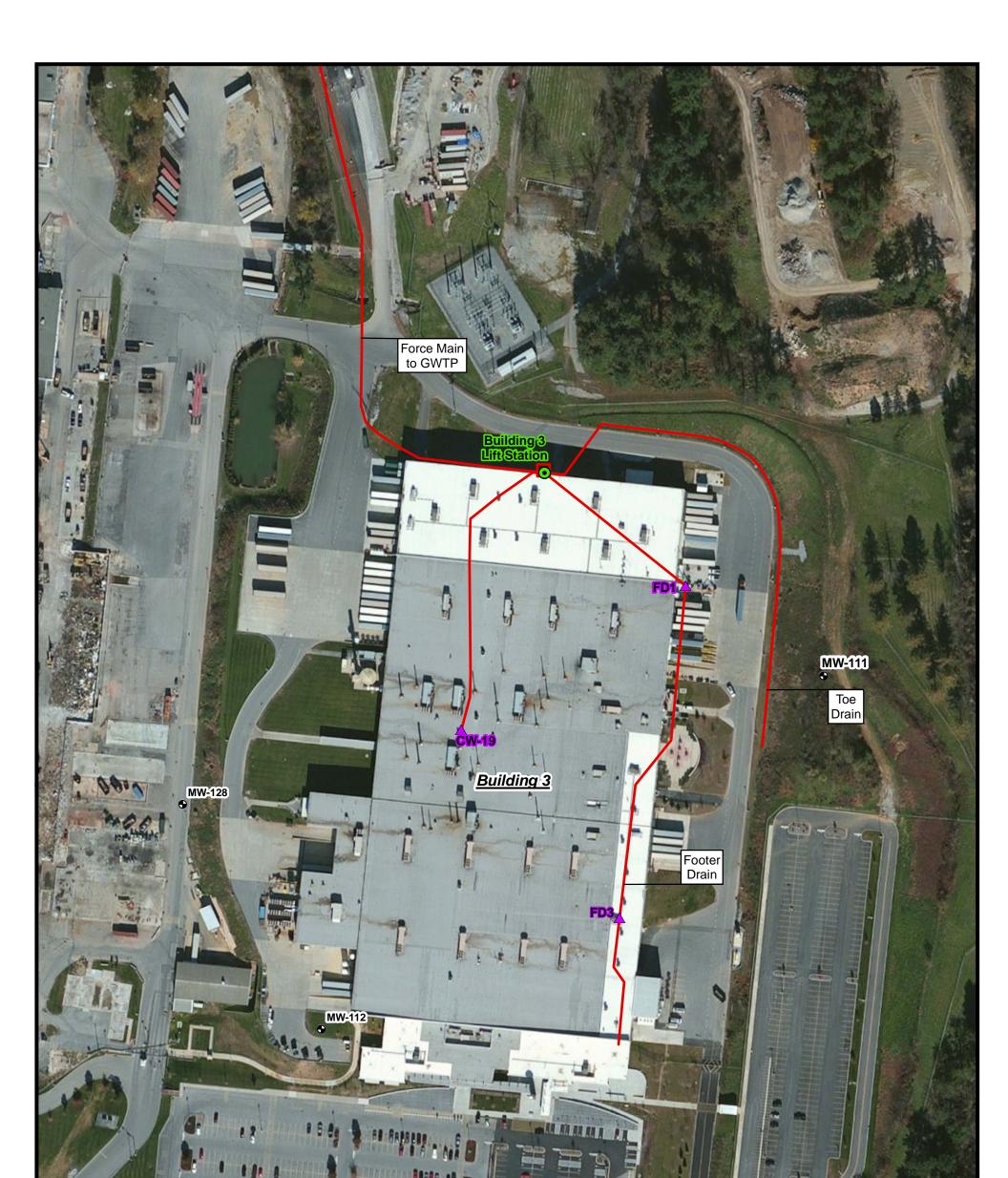
GSC appreciates the opportunity to assist Harley-Davidson and the fYNOP team with the results of the First Year Progress Report of the Bldg3 Footer Drain System Shutdown Monitoring. Please do not hesitate to contact me at 717-901-8187 if you have any questions or require additional information.

Very truly yours, GROUNDWATER SCIENCES CORPORATION

tiphers M. Anyder

Stephen M. Snyder, P.G. Senior Associate

Attachments:


- A Building 3 Footer Drain System Location Map B – Table 1
- C Lift Station Water Levels Hydrograph
- D Table 2
- cc: Ralph Golia, AMO Environmental Decisions Hamid Rafiee, USACE Baltimore District

References

- GSC, 2012. Field Sampling Plan For Part 2 of the Supplemental Groundwater Remedial Investigation at the former York Naval Ordnance Plant in York, Pennsylvania, April.
- GSC, 2013. Addendum #7, to Field Sampling Plan For Part 2 of the Supplemental Groundwater Remedial Investigation Former York Naval Ordnance Plant, March 20.
- GSC, 2014. Results of NPBA Extraction System and Bldg3 Footer Drain Monitored Shutdown Tests for Part 2 of the Supplemental Groundwater Remedial Investigation Former York Naval Ordnance Plant, April.

ATTACHMENT A

Building 3 Footer Drain System Long-Term Monitoring Locations

Figure 1

Former York Naval Ordnance Plant 1425 Eden Road, York, PA 17402

Building 3 Footer Drain System Long-Term Monitoring Locations

DRAWN BY: AGM CHECKED AND APPROVED BY: JSR DATE: 1/21/2015

Q:\10000\10012\Projects\2015 BLDG 3\Fig_1_20150121.mxd

GROUNDWATER SCIENCES CORPORATION

Legend

J.

mulfre.

- Automatic Transducer and Manual Gauging
- A Manual Gauging
- Monitoring Well Not Used for Long Term Monitoring
- Treatment System Piping (Approximate Location)

150

ATTACHMENT B

 Table 1 – Building 3 Footer Drain System Shutdown Test and Long-Term

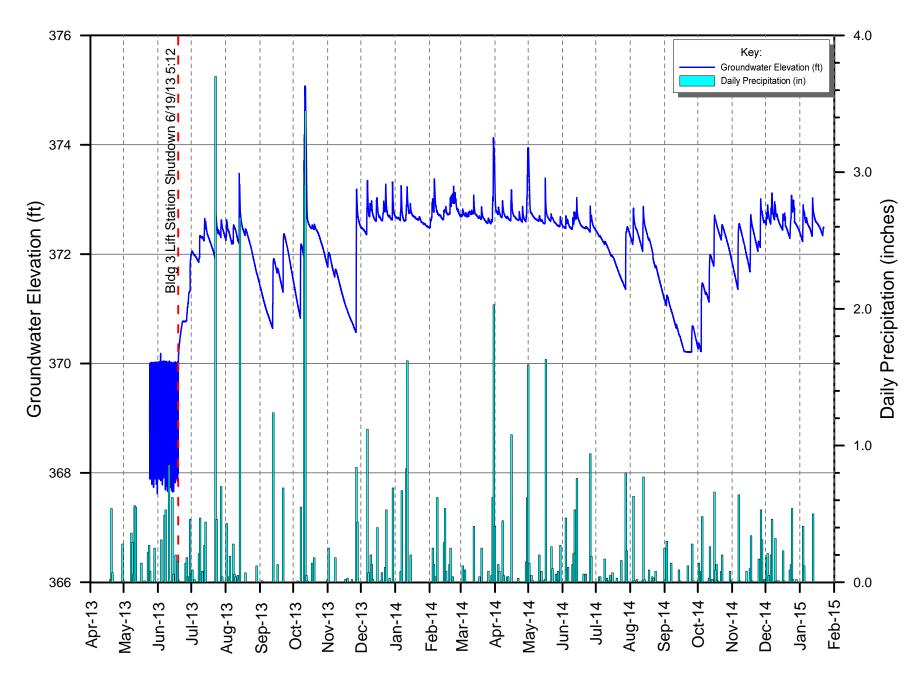
 Monitoring Water Levels

Table 1 Former York Naval Ordnance Plant- York, PA Building 3 Footer Drain System Shutdown Test and Long-Term Monitoring Water Level Measurments

			6/6/13			6/11/13			6/12/13			6/17/13			6/27/13			7/5/13		
		Bldg3 Footer Drain																		
		Shutdown Test Pre-			Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			
		Shutdown			Shutdown Test Event 1			Shutdown Test Event 2			Shutdown Test Event 3			Shutdown Test Event 4			Shutdown Test Event 5			
Site Type	Location	MPE	DTW	WL Elev	MPE	DTW	WL Elev	MPE	DTW	WL Elev	MPE	DTW	WL Elev	MPE	DTW	WL Elev	MPE	DTW	WL Elev	
Collection Well	CW-19	384.94	D	D	384.94	D	D	NM	NM	NM	384.94	D	D	384.94	NM	NM	NM	NM	NM	
Lift Station	Lift Station	396.53	27.62	368.91	396.53	28.68	367.85	NM	NM	NM	396.53	28.15	368.38	396.53	25.63	370.90	396.53	24.70	371.83	
Buildg 3 Footer Drain	BLDG 3 FD-1	392.20	D	D	392.20	D	D	392.20	NM	NM	392.20	D	D	392.20	NM	D	392.20	D	D	
Buildg 3 Footer Drain	BLDG 3 FD-3	396*	D	D	396*	NM	NM	396*	NM	NM	396*	D	D	396*	NM	D	396*	D	D	

		7/12/13			7/16/13			7/25/13			7/31/13			8/8/13			8/28/13		
		Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			Bldg3 Footer Drain			August 2013 Site Wide		
		Shutdown Test Event 6			Shutdown Test Event 7			Shutdown Test Event 8			Shutdown Test Event 9			Shutdown Test Event 10			Water Levels		
Site Type	Location	MPE	DTW	WL Elev	MPE	DTW	WL Elev	MPE	DTW	WL Elev									
Collection Well	CW-19	384.94	D	D	384.94	D	D	NM	NM	NM	NM	NM	NM	384.94	D	D	384.94	D	D
Lift Station	Lift Station	396.53	24.45	372.08	396.53	24.35	372.18	396.53	24.30	372.23	396.53	24.43	372.10	396.53	24.23	372.30	396.53	25.53	371.00
Buildg 3 Footer Drain	BLDG 3 FD-1	392.20	D	D	392.20	20.61	371.59	392.20	20.59	371.61	392.20	20.58	371.62	392.20	20.56	371.64	392.20	NM	NM
Buildg 3 Footer Drain	BLDG 3 FD-3	396*	D	D	396*	NM	NM	396*	NM	NM	396*	NM	NM	396*	NM	NM	396*	NM	NM

		7/17/14			8/21/14			9/11/14			10/28/14			11/24/14			12/15/14		
		Bldg3 LTM			Bldg3 LTM			Bldg3 LTM			Bldg3 LTM			Bldg3 LTM			Bldg3 LTM		
Site Type	Location	MPE	DTW	WL Elev															
Collection Well	CW-19	384.94	D	D	384.94	D	D	NM	D	D	NM	D	D	384.94	D	D	384.94	D	D
Lift Station	Lift Station	396.53	24.88	371.65	396.53	24.75	371.78	396.53	26.10	370.43	396.53	24.83	371.70	396.53	24.24	372.29	396.53	24.30	372.23
Buildg 3 Footer Drain	BLDG 3 FD-1	392.20	D	D	392.20	19.65	372.55	392.20	D	D	392.20	D	D	392.20	20.85	371.35	NM	D	D
Buildg 3 Footer Drain	BLDG 3 FD-3	396*	NM	NM	396*	D	D												


MPE - Measuring Point Reference Elevation (feet above mean sea level) DTW - Depth to Water (feet) WE Elev - Water Level Elevation (feet above mean sea level) NM - Not Measured D - Dry * - Approximate Unsurveyed Elevation

H:\10000\10012\GW RI Part 2\Building 3 Footer Drain LTM\2014 LTM Report\Tables\Tbl_1_BLDG_3WL_20150112.xlsx

ATTACHMENT C

Lift Station Water Levels Hydrograph

Lift Station Water Elevation

ATTACHMENT D

Laboratory Results

Undetected laboratory results are represented on the semi-log graphs as a concentration of 0.01 μ g/l, regardless of method detection limit or laboratory reporting limit. "J" qualified (estimated) results were plotted as actual values.

H:\10000\10012\GW RI Part 2\Building 3 Footer Drain LTM\2014 LTM Report/Final Report and Responses to Comments sent to Team\Bldg3 LTM Final Report Text.docx

Table 2 Groundwater Data Summary - Lift Station Former York Naval Ordnance Plant - York, PA

Location/ID	MSC	MSC	Federal	EPA RSL	Lift Station Deep Foundation										
	Used Aquifer R		MCL	Tap Water	12/10/2004	6/13/2005	12/9/2005	6/20/2006	6/19/2007	12/12/2007	10/23/2014	5/20/2008	12/16/2009	6/28/2011	12/10/2012
Parameter	(ug/L)	(ug/L)	(ug/L)		12, 10, 2004	0,10,2005	12/ 3/ 2003	0,20,2000	0,15,200,	12/12/2007	10/20/2014	3/20/2000	12, 10, 2005	0,20,2011	12, 10, 2012
TOTAL VOC	(46/2/	(46/2)	(46/ -/	(46/2/											
Total VOC					4.5	3.2	0.32	0	381.5	0	0	5.62	0.47	1.95	0.5
Volatile Organic Compound					4.5	5.2	0.52	Ŭ	501.5	Ū	ů	5.02	0.47	1.55	0.5
1,1,1,2-Tetrachloroethane	70	70		0.57							1.0 U	1 U	10	10	1 U
1,1,1-Trichloroethane	200	200	200	8000	1 J	U.8 J	1 U	5 U	5 U	5 U	1.0 U	0.71 J	10	10	10
1,1,2,2-Tetrachloroethane	0.84	4.3	200	0.076	10	10	10	50	5 U	5 U	1.0 U	10	10	10	10
1,1,2-Trichloroethane	5	5	5	0.28	3 U	3 U	10	5 U	5 U	5 U	1.0 U	0.17 J	10	10	10
1,1-Dichloroethane	31	160	<u> </u>	2.7	5 U	50	10	5 U	5 U	5 U	1.0 U	10	10	10	1 U
1,1-Dichloroethene	7	7	7	280	2 U	2 U	10	5 U	50	5 U	1.0 U	0.56 J	10	10	10
1,2-Dibromoethane	0.05	0.05	0.05	0.0075							1.0 U	1 U	10	10	1 U
1,2-Dichloroethane	5	5	5	0.17	2 U	2 U	1 U	5 U	5 U	5 U	1.0 U	1 U	10	10	1 U
1,2-Dichloropropane	5	5	5	0.44	10	10	10	5 U	5 U	5 U	1.0 U	10	10	10	1 U
1,4-Dioxane	6.4	32		0.78	1000 U	1000 U	200 U	1000 U	380 J	1000 U	200 U	200 U	200 U	200 U	200 U
2-Butanone	4000	4000		5600	5 U	5 U	5 U	5 U	5 U	5 U	5.0 U	10 U	10 U	5 U	5 U
2-Chloroethyl Vinyl Ether					5 U	5 U	2 U	10 U	10 U	10 U					
2-Hexanone	11	44		38							5.0 U	10 U	10 U	5 U	5 U
4-Methyl-2-Pentanone	2900	8200		1200							5.0 U	10 U	10 U	5 U	5 U
Acetone	33000	92000		14000							5.0 U	2.7 J	10 U	5 U	5 U
Acrolein	0.042	0.18		0.042	100 U	100 U	20 U	100 U	100 U	100 U					
Acrylonitrile	0.72	3.7		0.052	50 U	50 U	20 U	100 U	100 U	100 U	20 U	20 U	20 U	20 U	20 U
Benzene	5	5	5	0.45	1 U	1 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Bromochloromethane	90	90		83							1.0 U	1 U	1 U	1 U	1 U
Bromodichloromethane	80	80		0.13	1 U	1 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Bromoform	80	80		9.2	4 U	4 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Bromomethane	10	10		7.5	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Carbon Disulfide	1500	6200		810							1.0 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	5	5	5	0.45	2 U	2 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Chlorobenzene	100	100	100	78	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Chlorodibromomethane	80	80		0.17	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Chloroethane	230	900		21000	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Chloroform	80	80		0.22	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Chloromethane				190	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	70	70	36	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	0.84 J	1 U
cis-1,3-Dichloropropene	6.6	26		0.47	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	700	700	1.5	4 U	4 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	20	20		14							1.0 U	1 U	1 U	1 U	1 U
Methylene chloride	5	5		11	3 U	3 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Styrene	100	100	100	1200							1.0 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	5	5	11	1.1	1 U	1 U	5 U	5 U	5 U	1.0 U	0.28 J	1 U	0.22 J	1 U
Toluene	1000	1000	1000		5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	10	1 U
trans-1,2-Dichloroethene	100	100	100	360	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	10	1 U
trans-1,3-Dichloropropene	6.6	26		0.47	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	1 U	1 U
Trichloroethene	5	5	5	0.49	2.4	2.4	0.32 J	5 U	1.5 J	5 U	1.0 U	1.2	0.47 J	0.89 J	0.5 J
Vinyl Chloride	2	2	2	0.019	5 U	5 U	1 U	5 U	5 U	5 U	1.0 U	1 U	1 U	10	1 U
Xylenes (Total)	10000	10000	10000	190							3.0 U	3 U	3 U	3 U	3 U

Lift Station refers to a composite water sample collected from the Bldg3 Lift Station.

Lift Station Deep Foundation refers to a sample collected from the deep footer drain system beneath Bldg3.

Lift Station Toe of Slope refers to a sample collected of the drainage from the hillside toe drain.

Table 2 Groundwater Data Summary - Lift Station Former York Naval Ordnance Plant - York, PA

Location/ID	MSC	MSC	Federal	EPA RSL	Lift Station Deep Foundation	Lift Station Deep Foundation	Lift Station Toe of Slope			
Sample Date	Used Aquifer R	Used Aquifer NR	MCL	Tap Water	5/24/2013	9/16/2013	5/20/2008	12/16/2009	6/28/2011	1/3/2013
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)						
TOTAL VOC										
Total VOC					0.84	0.48	9.15	0.53	8.39	4.46
Volatile Organic Compound										
1,1,1,2-Tetrachloroethane	70	70		0.57	1 U	1 U	1 U	1 U	1 U	1 U
1,1,1-Trichloroethane	200	200	200	8000	1 U	1 U	0.77 J	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane	0.84	4.3		0.076	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane	5	5	5	0.28	0.21 J	1 U	0.22 J	1 U	1 U	1 U
1,1-Dichloroethane	31	160		2.7	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	7	7	7	280	1 U	1 U	0.56 J	1 U	1 U	1 U
1,2-Dibromoethane	0.05	0.05	0.05	0.0075	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	5	5	5	0.17	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloropropane	5	5	5	0.44	1 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	6.4	32		0.78	200 U	200 U	200 U	200 U	200 U	200 U
2-Butanone	4000	4000		5600	5 U	5 U	10 U	10 U	5 U	5 U
2-Chloroethyl Vinyl Ether										
2-Hexanone	11	44		38	5 U	5 U	10 U	10 U	5 U	5 U
4-Methyl-2-Pentanone	2900	8200		1200	5 U	5 U	10 U	10 U	5 U	5 U
Acetone	33000	92000		14000	5 U	5 U	10 U	10 U	6.8	4.2 J
Acrolein	0.042	0.18		0.042						
Acrylonitrile	0.72	3.7		0.052	20 U	20 U	20 U	20 U	20 U	20 U
Benzene	5	5	5	0.45	1 U	1 U	0.81 J	1 U	1 U	1 U
Bromochloromethane	90	90		83	1 U	1 U	1 U	1 U	1 U	1 U
Bromodichloromethane	80	80		0.13	1 U	1 U	1 U	1 U	1 U	1 U
Bromoform	80	80		9.2	1 U	1 U	1 U	1 U	1 U	1 U
Bromomethane	10	10		7.5	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Disulfide	1500	6200		810	1 U	1 U	1 U	1 U	1 U	1 U
Carbon Tetrachloride	5	5	5	0.45	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	100	100	100	78	1 U	1 U	1 U	1 U	1 U	1 U
Chlorodibromomethane	80	80		0.17	1 U	1 U	1 U	1 U	1 U	1 U
Chloroethane	230	900		21000	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	80	80		0.22	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane				190	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	70	70	70	36	1 U	1 U	0.92 J	1 U	1 U	1 U
cis-1,3-Dichloropropene	6.6	26		0.47	1 U	1 U	1 U	1 U	1 U	1 U
Ethylbenzene	700	700	700	1.5	1 U	1 U	1 U	1 U	1 U	1 U
Methyl tert-butyl ether	20	20		14	1 U	1 U	0.4 J	1 U	1 U	1 U
Methylene chloride	5	5		11	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	100	100	100	1200	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	5	5	11	1 U	1 U	2.1	1 U	0.18 J	10
Toluene	1000	1000	1000	1100	1 U	1 U	1 U	1 U	0.21 J	1 U
trans-1,2-Dichloroethene	100	100	100	360	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene	6.6	26		0.47	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	5	5	0.49	0.63 J	0.48 J	3.1	0.53 J	1.2	0.26 J
Vinyl Chloride	2	2	2	0.019	1 U	1 U	1 U	1 U	1 U	1 U
Xylenes (Total)	10000	10000	10000	190	3 U	3 U	0.27 J	3 U	3 U	3 U

Lift Station refers to a composite water sample collected from the Bldg3 Lift Station. Lift Station Deep Foundation refers to a sample collected from the deep footer drain Lift Station Toe of Slope refers to a sample collected of the drainage from the hillside 1