SOUTHERN PROPERTY BOUNDARY AREA VAPOR INTRUSION INVESTIGATION Former York Naval Ordnance Plant 1425 Eden Road, Springettsbury Township York, Pennsylvania

Prepared for:

Harley-Davidson Motor Company Operations, Inc.

1425 Eden Road

York, Pennsylvania

July 2015

Prepared by:

Groundwater Sciences Corporation

2601 Market Place Street, Suite 310 Harrisburg, Pennsylvania 17110 560 Route 52, Suite 202 Beacon, New York 12508

1108 Vestal Parkway East, Suite 2 Vestal, New York 13850

SOUTHERN PROPERTY BOUNDARY AREA VAPOR INTRUSION INVESTIGATION Former York Naval Ordnance Plant 1425 Eden Road, Springettsbury Township York, Pennsylvania

Prepared for:

Harley-Davidson Motor Company Operations, Inc.

1425 Eden Road

York, Pennsylvania

July 2015

Prepared by:

Groundwater Sciences Corporation

ydu

Stephen M. Snyder, P.G. Senior Associate Groundwater Sciences Corporation **July 1, 2015** DATE

Table of Contents

1	INT	RODUCTION	1
2	РНҮ	SICAL CHARACTERISTICS OF THE STUDY AREA	
	2.1	Geology	3
	2.2	Hydrogeology	3
3	DAT	TA QUALITY ASSESSMENT	5
	3.1	Precision	7
	3.2	Accuracy	7
	3.3	Bias	10
	3.4	Representativeness	10
	3.5	Comparability	10
	3.6	Completeness	11
	3.7	Sensitivity	11
4	FIEI	LD INVESTIGATION ACTIVITIES	12
	4.1	Installation of Monitoring Wells and Soil Vapor Probes	12
	4.1.1	Utility Pre-Clearance	13
	4.1.2	2 Soil and Bedrock Characterization	13
	4.1.3	3 Monitoring Well Installation and Development	14
	4.1.4	Collection of Undisturbed Soil Samples and Soil Vapor Probe Installation	15
	4.1.5	5 Decontamination Procedures	16
	4.2	Survey	16
	4.3	Groundwater Elevation Measurements	16
	4.4	Monitoring Well Sampling	17
	4.5	Investigation-Derived Waste Handling and Disposal	17
5	RES	ULTS	
	5.1	Field Descriptions of Soil and Bedrock	
	5.2 Pa	article Size Distribution Results and USDA Soil Texture Classifications in the	Vadose
	Z	one	19
	5.3	Groundwater Level Elevations and Apparent Flow Directions	20
	5.3.1	Water Table Elevation Contours	20
	5.3.2	2 Vertical Downward Gradients	
	5.4	Groundwater Chemistry	21
	5.4.1	Screening Groundwater Concentrations	
6	SUN	IMARY AND CONCLUSIONS	
7	REF	ERENCES	

Tables

Table 1	Physical Well Data Table
Table 2	Undisturbed Soil Sample Depths (in text)
Table 3	Potentiometric Elevation Data
Table 4	Monitoring Well VOC Data
Table 5	Stabilized Temperatures of Groundwater Samples Using Low Flow Techniques (in text)
Table 6	VISL Screening Results

Figures

Figure 1	Study Area Location Map
Figure 2	Well and Soil Vapor Probe Locations

- Figure 3 Cross Sections SPA A-A' and B-B'
- Figure 4 Water Table Contour Map

Figure 5 Groundwater Investigation Chemistry Results

Appendices

- Appendix A Monitoring Well Logs
- Appendix B Soil Vapor Probes Construction Specifications and Logs
- Appendix C Particle Size Distribution Reports
- Appendix D Monitoring Well Development Records
- Appendix E Monitoring Well Sampling Purge Logs
- Appendix F USDA Soil Texture Trilinear Diagrams
- Appendix G VISL Spreadsheet Calculations

LIST OF ACRONYMS AND ABBREVIATIONS

µg/l	micrograms per liter
bgs	below ground surface
CCV	continuing calibration verification
CLP	Contract Laboratory Program (USEPA)
COC	constituents of concern
CR	cancer risk
DQO	data quality objective
FSP	field sampling plan
fYNOP	former York Naval Ordnance Plant
GSC	Groundwater Sciences Corporation
Harley-Davids	son Harley-Davidson Motor Company Operations, Inc.
HHRA	Human Health Risk Assessment
I.D.	inner diameter
IDW	investigation-derived waste
IS	internal standard
HI	hazard index
HQ	hazard quotient
LCL	lower control limit
LCS/LCSD	laboratory control sample / laboratory control sample duplicate
LOD	limit of detection
Langan	Langan Engineering and Environmental Services, Inc.
MEK	methyl ethyl ketone
mL	milliliter
MS/MSD	matrix spike / matrix spike duplicate
MSL	mean sea level

NSSG	near-source soil gas
O.D.	outside diameter
PADEP	Pennsylvania Department of Environmental Protection
PCE	tetrachloroethene
PVC	polyvinyl chloride
QAPP	Quality Assurance Project Plan
QA/QC	quality assurance / quality control
RPD	relative percent difference
SPBA	Southern Property Boundary Area
TCE	trichloroethene
TCR	target cancer risk
UCL	upper control limit
USDA	United States Department of Agriculture
USEPA	United States Environmental Protection Agency
VI	vapor intrusion
VISL	Vapor Intrusive Screening Level
VOCs	volatile organic compounds

1 INTRODUCTION

This report presents the results of an investigation to assess the potential for vapor intrusion (VI) in an off-Site Area to the south of the Southern Property Boundary Area (SPBA) at the former York Naval Ordnance Plant (fYNOP) located in York, Pennsylvania (defined as the Site) (see **Figure 1**). This off-Site area extends from the SPBA to U.S. Route 30 / Arsenal Road (hereinafter referred to in this report as the Study Area as shown on **Figure 1**). The investigation was performed by Groundwater Sciences Corporation (GSC) between October 2014 and April 2015. Elements of the VI investigation are described in Addendum #15 of the Field Sampling Plan (FSP) for Part 2 of the Supplemental Groundwater Remedial Investigation (GSC, April 2012).

Historical accounts indicate that liquid waste containing volatile organic compounds (VOCs) was used to control weeds and reduce dust along the SPBA perimeter road. Results of previous investigations in the SPBA indicate the primary VOCs present in soil and groundwater in this portion of the Site consist of trichloroethene (TCE) and tetrachloroethene (PCE) (Langan Engineering and Environmental Services, Inc. [Langan], 2005 and GSC, 2011). Previous monitoring in the off-Site portion of the Study Area near U.S. Route 30 indicated the presence of PCE and TCE in bedrock groundwater at concentrations significantly lower than those detected in the SPBA (GSC, 2011).

In 2005, results of a VI assessment of the Study Area concluded that the VI pathway due to volatilization of constituents of concern (COCs) from shallow groundwater is not complete (Langan, 2005). Thereafter, United States Environmental Protection Agency (USEPA) issued its Documentation of Environmental Indicator Determination finding that the VI pathway in the residential area off-Site in the vicinity of the SPBA was not significant (USEPA, 2005). The USEPA recently reviewed the 2005 VI assessment as part of their review of the proposed approach to the Human Health Risk Assessment (HHRA) for the Site (email from Griff Miller, USEPA to Stephen Snyder, GSC dated August 14, 2014). USEPA concluded that the methodology and modeling approach that it previously approved for the 2005 VI assessment are no longer considered by USEPA to be reliable methods to estimate the potential for VI into residences located in the off-Site portion of the Study Area. USEPA has requested more information to determine whether VI is a potential pathway for COCs from the Site into these neighboring residences.

Addendum #15 of the FSP provides a systematic program to assess the potential for VI that includes investigations of groundwater in the saturated materials just below the water table and, if necessary based on groundwater analytical results, soil gas in the vadose zone just above the capillary zone. The scope of work described includes the drilling of soil borings and installation of monitoring wells targeting shallow groundwater at ten locations in the off-Site neighborhood and five locations in the apparent SPBA source area on the fYNOP property.

The original version of Addendum #15 was submitted to USEPA and PADEP for review on October 2, 2014. Comments were received from USEPA on the original submittal, resulting in modifications to the work scope to accommodate the comments. The modified work scope was approved by USEPA by letter of October 31, 2014 from Griff Miller of USEPA to Steve Snyder of GSC.

In accordance with the modified work scope, the shallow groundwater portion of the VI investigation was proposed to include the installation of a stratigraphic boring, continuous soil sampling and geologic logging, grain size and moisture content analyses, monitoring well installation and development, potentiometric groundwater elevation monitoring, and groundwater sampling and analysis for Site-related VOCs. The vadose zone soil gas portion of the VI investigation was proposed to include installation of a second soil boring, proximate to each newly installed shallow groundwater monitoring well, for the collection of undisturbed soil samples and the installation of soil vapor probes, if called for by the results of the groundwater sampling. Physical testing of undisturbed soil samples along with sampling and analysis of the soil vapor probes were proposed only under the condition that VOC concentrations in groundwater sampled from the nearby monitoring well yielded one or more exceedances of target cancer risk or hazard indices calculated using the USEPA's Vapor Intrusive Screening Level (VISL) Calculator. Additional details about the application of the VISL Calculator are identified in Addendum #15 of the FSP.

The execution of this program of groundwater and soil gas investigations and the results generated by its execution are described herein.

July 2015

2 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

The fYNOP is located in Springettsbury Township in York County, Pennsylvania. The Site setting and history is described in detail in the Supplemental RI Groundwater Report (GSC, 2011). The SPBA is located along the eastern portion of the southern property line of the Harley-Davidson Motor Company Operations, Inc.'s (Harley-Davidson) property. The adjacent off-Site residential area is located south of the SPBA, north of Arsenal Road and west of North Sherman Street (**Figure 1**).

The SPBA, located on Harley-Davidson property, is undeveloped woodland. The off-Site portion of the Study Area to the south is primarily comprised of residential properties with single-family homes, lawns and driveways. Commercial properties are located in the Study Area near the intersection of U.S. Route 30 / Arsenal Road and North Sherman Street. The topography of the Study Area slopes downhill from the SPBA to the off-Site residential area to the south.

2.1 Geology

Subsurface geologic conditions in the Study Area consist of either fill (associated with residential and roadway construction) or residual soil overlying bedrock. The residual soil consists primarily of silt and clay produced from the weathering of the underlying bedrock. As described in the Supplemental RI Groundwater Report (GSC, 2011), regional geologic mapping indicates bedrock formations beneath the Study Area include solution-prone (karst) gray carbonate bedrock (limestone and dolostone) and quartzitic sandstone. The quartzitic sandstone is encountered beneath the upland area in the southeastern portion of the Site, including a portion of the SPBA in the area north of Canterbury Lane (see **Figure 1**). The limestone and dolostone is located beneath the majority of the Study Area, including a portion of the SPBA.

2.2 Hydrogeology

The focus of this investigation is on groundwater quality at the water table, from which VOCs may potentially volatilize to create a soil vapor source for potential vapor intrusion into overlying structures. Within the study area, the water table sometimes occurs in the residual soil and sometimes occurs in the bedrock. The saturated thickness of the residual soil is variable, from 0 to greater than 30 feet. The limestone and dolostone is a karstic carbonate aquifer with groundwater

migrating through solution-enhanced discontinuities. The hydraulic conductivity of the quartzitic sandstone is a much lower than that of the carbonate rock. Groundwater in the quartzitic sandstone flows through discrete bedding plane partings, joints, and fractures, while the discontinuities in the carbonate aquifer have been enlarged by dissolution.

The lateral component of shallow groundwater flow in the Study Area is generally from north to south. However, where carbonate bedrock is present, the predominant direction of groundwater flow is vertical in response to a strong vertical gradient from the saturated residual soil downward into the underlying carbonate bedrock. Therefore, localized lateral flow within the shallow groundwater at and just below the water table is anticipated to be limited by the presence of this vertical downward gradient, as well as the lateral extent and thickness of fine-grained residual soils, the location of the contact between the quartzitic sandstone and the carbonate bedrock, the presence of shallow solution-enhanced karst features in the limestone and dolostone, and the occurrence of enhanced localized recharge due to the presence of surface water drainage features, such as storm sewers, that may concentrate surface water runoff.

3 DATA QUALITY ASSESSMENT

A comprehensive quality assurance/quality control (QA/QC) program was followed during the VI investigation in the off-Site area south of the SPBA at fYNOP. Groundwater samples and associated QA samples (e.g., field duplicates, equipment rinse blanks, field blanks, trip blanks, matrix spikes, and matrix spike duplicates) were analyzed for VOCs using approved methods specified in the QAPP (GSC, 2014) and in Addendum #15 of the FSP for Part 2 of the Supplemental Groundwater Remedial Investigation (GSC, 2012).

GSC conducted a systematic review of 10 percent of the data for compliance with QC criteria in accordance with SAIC Technical Procedure TP-DM-300-7 for data validation (300-7, Rev. 3, June 2009) and based on the following categories:

- 1. Holding times,
- 2. Blanks,
- 3. Laboratory control samples and laboratory control sample duplicates (LCS/LCSDs),
- 4. Surrogate recoveries (organic methods),
- 5. Internal standard (IS) recoveries (organic methods),
- 6. Calibrations (initial and continuing),
- 7. Sample reanalysis,
- 8. Secondary dilutions, and
- 9. Laboratory case narrative review and verification.

Data evaluation was accomplished by comparing the contents of the data packages and QA/QC results to requirements contained in the requested analytical methods. GSC evaluated QC data reported by the laboratory against required precision and accuracy limits established in Tables A-2 and A-4 of the QAPP (GSC, 2014).

Consistent with the data quality requirements as defined in the data quality objectives (DQOs), all project data and associated QC data were evaluated on these categories and qualified according to the outcome of the review. During the review, laboratory-applied data qualifiers were evaluated, defined, and explained. During verification, individual sample results were qualified, as necessary,

to designate usability of the data toward meeting project objectives. The qualifiers used are defined as follows:

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit. These results are qualitatively acceptable.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. Although estimated, these results are qualitatively acceptable.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample. Although estimated, these results are qualitatively acceptable.
- R The analyte result was rejected due to serious deficiencies in the ability to analyze the sample and/or meet QC criteria. The presence or absence of the analyte cannot be verified.

Data qualifications were applied based on deviations from the measurement performance criteria identified in TP-DM-300-7.

A secondary stage of validation occurred once the initial validation for a discrete sampling event had been completed. Individual equipment rinse blanks, trip blanks, and field blanks were associated with the corresponding environmental samples. These field QC blanks were evaluated following the same criteria as method blanks, and the associated environmental samples were qualified accordingly.

The following sections summarize the laboratory chemical analysis program implemented as part of the groundwater sampling conducted in the SPBA. The project DQOs are summarized in the following sections and include a discussion on precision, accuracy, bias, representativeness, comparability, and completeness, and sensitivity. All data qualified due to the data validation process are presented in **Table 4**.

3.1 Precision

Precision was evaluated using the analysis of three types of QC samples: matrix spike / matrix spike duplicates (MS/MSDs), LCS/LCSDs, and field duplicate sample analyses.

The first type of QC sample used to assess the data precision was MS/MSD samples. All MS/MSD relative percent differences (RPDs) for project-sourced samples were acceptable. The second type of QC sample used to assess the data precision was LCS/LCSD samples. With the exception of three samples (see below), all LCS/LCSD RPD values were within acceptance criteria.

The third type of QC sample used to evaluate precision was field duplicates. Duplicate sample pairs were collected to ascertain the contribution of variability (i.e., precision) associated with environmental media and sampling precision technique. Field duplicate RPDs were calculated for analytes above the limit of detection (LOD) and all RPDs were below the lower control limit (LCL). Data have not been qualified based on the results of field duplicates, since the USEPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review (EPA 540R/R-99/008) does not include control limits for field duplicate RPD values.

Overall, one result in each of three samples (see below) was rejected due to unacceptable precision. Based on an evaluation of MS/MSD, LCS/LCSD, and field duplicate RPDs, the overall precision is acceptable. As a result, the laboratory DQO for precision was met.

3.2 Accuracy

Analytical accuracy was measured through the use of LCSs, ISs, surrogates, MS/MSDs, instrument performance checks, initial and continuing instrument calibration, serial dilutions, second column confirmation analysis, method and calibration blanks, and field QC blanks (i.e., trip blanks, field blanks, and equipment rinse blanks).

The first type of QC sample used to assess the data accuracy was LCS and/or LCSD samples. The LCS and/or LCSD percent recoveries were acceptable with the exception of slightly low or high recoveries for carbon disulfide and 1,1,2,2-tetrachloroethane. As a result, six reported analytes were qualified as estimated (UJ) and three reported analytes were rejected (R).

The second QC measure used to assess the accuracy of the data was the surrogate percent recoveries for VOCs. Sample results were qualified as estimated (J/UJ) if the associated surrogates were below the LCL. Detected organic sample results were qualified as estimated (J) if the associated surrogate recovery was greater than the upper control limit (UCL). Non-detected organic sample results were qualified as rejected (R) if the associated surrogate recovery was less than 10 percent. All surrogate recoveries were within control limits.

ISs were added in calibration standards, environmental samples, and QC blanks in accordance with SW846 Methods 8260B for VOCs. All ISs for VOCs were within control limits in the two data packages that received full validation.

MS/MSD analyses were another QC method used to assess data accuracy. The native sample was qualified if MS or MSD recoveries were outside the applicable recovery QC limits. This was the case with several results for 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane.

Initial calibration of each instrument was completed in accordance with SW-846 method requirements for all analyses. All initial calibration criteria were met. No data were qualified due to unacceptable initial calibrations.

Continuing calibration verification (CCV) of each instrument was completed in accordance with SW-846 method requirements. Organic sample results were qualified as estimated (J/UJ) if the associated CCV was less than the LCL. Detected organic sample results were qualified as estimated (J) and non-detected sample results were qualified UJ if the associated CCV was above the UCL. No results were rejected (R) due to CCV results.

Method blanks were analyzed with each batch of samples in accordance with the analytical methods listed in the QAPP (GSC, 2014). Methylene chloride was detected in one or more method blanks at concentrations that might bias analytical results. Methylene chloride results in five samples were qualified as non-detect (U) due to method blank contamination. Methylene chloride detection in four other samples were qualified based on professional judgement and the fact that methylene chloride is a common laboratory contaminant.

During activities conducted as part of the groundwater monitoring program at fYNOP, field QC blanks were collected to gauge the impacts from various components of field activities. Field QC

samples were obtained to determine the degree of cross-contamination, verify successful decontamination procedures, or determine the effects of media heterogeneity on results. Equipment rinse blanks and field blanks provide a measure of various cross-contamination, decontamination efficiency, and other potential error that can be introduced from sources other than the sample. Field sample results associated with contaminants found in field QC blanks are considered non-detect (U) if they are at concentrations less than 10 times for common laboratory contaminants and less than 5 times for remaining contaminants, the level found in the associated blank.

Several VOCs were detected in equipment rinse blanks but the concentrations were not high enough to bias the analytical results. The associated sample detections less than 5 times the blank results would otherwise be qualified as non-detect (U) for rinse blank contaminants.

Several VOCs were detected in field blanks sourced from organic-free water at concentrations that were not high enough to bias analytical results. For the associated samples that had detections less than 10 times the field blank (for common laboratory contaminants) and less than 5 times the field blank (for the remaining contaminants), the field blank results would otherwise be qualified as non-detect (U) for field blank contamination.

Overall analytical accuracy was measured through the use of calibration standards (initial and continuing), surrogates, instrument performance checks, MS/MSDs, LCSs, serial dilutions, and method and calibration blanks. Supporting QC information cited above was qualitatively evaluated with respect to the analytical accuracy DQO. Only three data points for carbon disulfide were rejected due to unacceptable accuracy. Based on the evaluation of the initial and continuing calibration, surrogate, MS/MSD, LCS, serial dilution, and method blank results, the laboratory accuracy has been determined to be acceptable for all other analyses. The analytical DQO for accuracy has been met except as noted.

Based on an evaluation of the compounds and elements detected in the field QC blanks, overall field accuracy is acceptable, except where noted. As a result, the field DQO for accuracy has been fulfilled.

3.3 Bias

Bias is the systematic or persistent distortion of a measurement process causing errors in one direction. Analytical bias was evaluated by analysis of LCS/LCSD and MS/MSD samples. The laboratory performed a LCS/LCSD or MS/MSD for each analytical batch, as appropriate.

Acceptance criteria for LCS/LCSD and MS/MSD measurements will be expressed as a percent recovery and are specified in the analytical method and in the EPA Region 2 Standard Operating Procedures for the Validation of Organic Data (HW-24, Rev. 1, June 1999). Various blank samples (such as laboratory method blanks and field equipment rinse blanks) will also be used to assess contamination of samples that may bias results high.

3.4 Representativeness

Representativeness was satisfied by verifying that the QAPP (GSC, 2014) was properly followed, that proper sampling techniques were used, that proper analytical procedures were followed, and that analytical holding times of the samples were not exceeded. No samples were analyzed outside the VOC method required holding time and no results were qualified as estimated (J/UJ) due to missed holding times. Holding times exceeding more than two times the method required holding time are rejected (R) for non-detects and estimated (J) for detects. No sample results were rejected due to missed holding times. Based on an evaluation of sample precision and accuracy, the samples collected during groundwater sampling in the SPBA are considered to be representative of the environmental conditions.

3.5 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is achieved through the use of established and approved sample collection techniques and analytical methods, consistency in the basis of analysis (wet weight vs. dry weight, volume vs. mass, etc.), consistency in reporting units, and analysis of standard reference materials.

Data comparability is achieved by using standard units of measure. The use of EPA-approved methods to collect and analyze samples, along with instruments calibrated against Standard

Analytical Reference Materials, which are National Institute for Standards and Technologytraceable standards, also aids comparability.

Based on the precision and accuracy assessment presented above and the use of EPA-approved methods, the data collected during groundwater sampling in the SPBA are considered to be comparable to data collected using similar EPA-approved methods.

3.6 Completeness

Completeness measures the quantity of valid data generated from the laboratory analysis and sampling processes. For data to be valid, all acceptance criteria must be fulfilled, including accuracy and precision, as well as other criteria specified by the analytical methods used for analytical data to be usable, each data point must be validated satisfactorily. Results of the groundwater sampling in the SPBA that have been qualified for completeness reasons have limited impact on the data quality. The DQOs were set at 90 percent for the field sampling and laboratory completeness. Based on the evaluation of the field and laboratory QC results, the data exceeded 90 percent completeness and were used in assessing results and providing recommendations.

Results that have been flagged or qualified U, UJ, or J for various reasons encountered minor analytical problems, with limited impact on the data quality.

3.7 Sensitivity

Sensitivity requirements were provided as minimum required reporting limits in the QAPP (GSC, 2014). All reporting limit criteria were specified with the exception of those samples that required dilution due to matrix interferences or elevated target compounds. Reporting limits have been determined to be acceptable for all analyses. The analytical DQO for sensitivity has been met.

GROUNDWATER SCIENCES CORPORATION

4 FIELD INVESTIGATION ACTIVITIES

The work scope for field investigation activities undertaken as part of the VI investigation of the Study Area includes: stratigraphic boring advancement with continuous soil sampling and geologic logging; monitoring well construction, development, and sampling; survey of the newly installed monitoring wells and collection of depth to groundwater measurements; collection of undisturbed soil samples, and installation and sampling of soil vapor probes, the latter to be sampled only if required based on the results of the groundwater investigation. These field investigation activities are described in detail in the following sections.

4.1 Installation of Monitoring Wells and Soil Vapor Probes

Fifteen stratigraphic borings were completed in the Study Area and a monitoring well was installed in each of the stratigraphic borings as shown on **Figure 2**. Five of the monitoring wells were installed along the southeastern boundary of the fYNOP property (MW-161 through MW-165) and ten monitoring wells were installed in the off-Site portion of the property (MW-166 through MW-175). The second boring for each of the ten boring pairs in the off-Site portion of the Study Area was to be completed prior to sampling the groundwater, in order to avoid remobilizing the drilling rig to the Canterbury Lane neighborhood. However, due to delays in the field investigation program, groundwater chemistry data became available prior to the completion of the undisturbed samples and installation of soil vapor probes. After the completion of the second soil borings at SV-167, SV-168 and SV-171, analytical results were received for the first round of groundwater samples collected from the newly installed monitoring wells. The analytical results were evaluated using the VISL Calculator and the VOC concentrations detected in samples collected in the off-Site portion of the Study Area were found not to exceed the target cancer risk or hazard index. For that reason, pursuant to FSP Addendum #15, drilling of the remaining second borings and installation of additional vapor probes was not completed.

The stratigraphic borings, monitoring well installations, and soil vapor probe installations were performed by Eichelbergers, Inc. of Mechanicsburg, PA, with oversight by GSC.

4.1.1 Utility Pre-Clearance

Utility notification was provided by Eichelbergers, Inc. through the Pennsylvania One Call System on October 23, 2014. The proposed boring locations were marked on the ground with marking paint by GSC on October 27, 2014. Marked boring locations were reviewed and approved by Harley-Davidson, in accordance with the Harley-Davidson "Subsurface Protocol and Utility Clearance, Work Instruction (WI) YS2.03.300". The Harley-Davidson "Checklist for Off-Site Well Siting" was completed for each proposed boring location prior to the commencement of drilling activities.

Beginning on November 4, 2014, each proposed boring location was hand-cleared to a depth of five feet using hand tools and an air knife/vacuum excavation unit in order to identify and avoid subsurface utilities not previously marked and identified. During the process of hand clearing, an unmarked municipal water line was identified at the proposed location for MW-170. The proposed MW-170 boring location was moved 25 feet to the west and the utility pre-clearance process described above was repeated.

4.1.2 Soil and Bedrock Characterization

One stratigraphic boring at each of the 15 boring locations, designated MW-161 through 175 was completed to characterize the soil and/or bedrock that comprise the vadose zone and shallow portion of the saturated zone in the Study Area. The 15 stratigraphic borings were advanced to a depth that allowed the characterization of the shallow portion of the saturated zone just below the apparent encounter of the water table. Eleven stratigraphic borings were terminated in overburden soils and four borings were terminated in shallow bedrock.

The soil borings were advanced using 4 ¹/₄-inch inner diameter (I.D.) hollow-stem auger drilling techniques. Continuous soil sampling was performed in the stratigraphic borings by hydraulicallydriven direct-push drilling techniques using a 2-inch or 3-inch I.D. dual-tube macrocore sampler. The soil samples were logged in the field by a GSC geologist for texture, color, moisture, sample depth interval and recovery. The texture of the soil samples was described in accordance with the Modified Burmeister classification system. Soil samples were collected in glass jars and transported to the GSC Harrisburg office. The four stratigraphic borings where bedrock was encountered prior to reaching an apparent zone of saturation are designated MW-163, MW-164, MW-165 and MW-171. To advance these borings beyond the point of auger refusal, a 5-inch diameter hammer bit was used to drill into bedrock using air rotary techniques. The rock chips produced by air rotary drilling were logged in the field by a GSC geologist for lithology, hardness, weathering, color and texture.

4.1.3 Monitoring Well Installation and Development

After drilling into the shallow portion of the saturated zone, a 1-inch I.D. polyvinyl chloride (PVC) temporary monitoring well was placed into the boreholes. The water level in the 1-inch temporary well was monitored until the water level stabilized in order to determine an appropriate depth at which to construct a permanent monitoring well.

After apparent stabilization of the water level, the 1-inch I.D. temporary well was removed and a 2-inch I.D. permanent monitoring well was constructed in the borehole. The 2-inch I.D. monitoring well was constructed using schedule 40 PVC riser pipe, PVC well screen with 0.01-inch slots, and a size #1 sand filter pack. Well construction and development was completed in accordance with the specifications and procedures identified in subsection 4.2.4.4 of the FSP (pp. 35-37). Care was taken to attempt to place the well screen of the newly constructed wells within the top five feet of the water table. In 11 wells, that goal was met. In the remaining four wells, the goal was exceeded by less than ten feet.

During the time of this investigation (fall 2014 and winter 2015), weather conditions were sufficiently dry that, MW-64S was dry. This is a somewhat rare condition in that this was only the fourth time in the 19 years of observing the MW-64 couplet that MW-64S was recorded as dry. When well MW-161 was drilled 39 feet from MW-64S, care was taken to observe the shallow water table conditions. During advancement of the MW-161 boring, two thin saturated zones were noted at depths of 35.4 to 35.8 feet below ground surface (bgs) and 36.8 to 37.0 feet bgs. Drilling was halted to observe water levels overnight, but water did not collect in the boring. In the absence of sufficient water to sample, the boring was deepened and constructed with a screen opening from 56 to 66 feet bgs, where saturated conditions were detected. The thin saturated zones in MW-161 occurred at the approximate elevation of 378 feet msl, compared to the lowest water level measured in MW-64S, which is 375 feet msl. These zones may represent the water table conditions normally

detected at MW-64S. The water level measured in MW-161 is nearly the same elevation as MW-64D.

The locations of the SPBA monitoring wells are shown on **Figure 2**. Physical well data, including depths of screened intervals, surface completions, and survey data are identified in **Table 1**. Monitoring well drilling and construction logs are provided in **Appendix A**.

The newly installed monitoring wells were developed by Eichelbergers, Inc. and GSC personnel between January 7, 2015 and March 3, 2015. The wells were developed to remove fine-grained formation particles from the well sand pack and promote the exchange of groundwater between the formation and the well. The wells were developed following procedures in the FSP subsection 4.2.4.4. **Appendix D** contains monitoring well development records.

4.1.4 Collection of Undisturbed Soil Samples and Soil Vapor Probe Installation

A second soil boring, designated SV-167, SV-168 and SV-171, was completed proximate to each of newly installed groundwater monitoring wells MW-167, MW-168 and MW-171 (**Figure 2**). These soil borings were advanced using hollow-stem auger drilling techniques to the top of the intervals designated for the collection of undisturbed soil samples. Undisturbed soil samples were collected in 30-inch long, 3-inch outside diameter (O.D.) steel Shelby tubes using hydraulically-driven direct-push drilling techniques. The top and bottom of the Shelby tubes were sealed with paraffin wax, capped, labeled, and stored at the Site in an upright position.

After the collection of an undisturbed soil sample, the soil boring was advanced using hollow-stem auger drilling techniques to the top of the interval of the next deepest undisturbed soil sample. Two or three undisturbed soil samples were collected in each boring at the depths in feet bgs indicated on **Table 2**.

TABLE 2									
UNDISTURBED SOIL SAMPLE DEPTHS									
SV-167	SV-168	SV-171							
feet bgs	feet bgs	feet bgs							
8 to 10	8 to 8.8	8.5 to 11							
21 to 23	11 to 13.2	13 to 15.5							
25 to 27		20 to 22.5							

When all undisturbed soil samples in a soil boring were collected, the boring was advanced using hollow-stem auger drilling techniques to a depth of six-inches lower than the base of the deeper of the two nested soil vapor probes to be constructed.

Soil vapor probes SV-167, SV-168 and SV-171 were constructed according to the specifications identified in the Technical Memorandum "Near Source Soil Gas Vapor Point Installation" and the associated figure and table in **Appendix B**. The first vapor probe was installed with the goal of screening the vadose zone as close to the top of the capillary zone as possible. There was concern, however, that groundwater levels would rise prior to sampling, and render the vapor probe useless. As a precaution, a second vapor probe was installed five feet above the first vapor probe installation.

4.1.5 Decontamination Procedures

Down-hole tools used for drilling were decontaminated according to the procedures identified in subsection B.1.4 of the Quality Assurance Project Plan (QAPP).

4.2 Survey

Horizontal coordinates and vertical elevations of the monitoring wells were surveyed on March 11, 2015 by a Pennsylvania-licensed surveyor from Nutec Group of York, PA as described in subsection 4.2.4.4 of the FSP. Monitoring well survey data are tabulated in the Physical Well Data Table (**Table 1**).

4.3 Groundwater Elevation Measurements

Depth to water was measured by GSC personnel using an electronic water level meter to record depth below the PVC reference point for each monitoring well to the nearest 0.01 feet. Water levels for each well were measured several times throughout the monitoring well installation, development, and sampling activities. Comprehensive water level measurement rounds were performed in the Study Area on February 20, 2015 and April 14, 2015. Depth to water measurements recorded on these two dates and the corresponding groundwater elevation data are tabulated in **Table 3**.

4.4 Monitoring Well Sampling

The 15 newly installed monitoring wells were sampled twice by GSC personnel during the period from March 3, 2015 to April 10, 2015. In accordance with Pennsylvania Department of Environmental Protection (PADEP) guidance, the monitoring wells were sampled at least 14 days after they were developed, and were resampled at least three weeks after they were initially sampled. In addition to sampling the 15 newly installed monitoring wells, GSC personnel sampled three existing nearby monitoring wells: MW-64S, MW-64D and MW-141A, between April 14, 2015 and April 16, 2015. Sampling was performed in accordance with subsection 4.2.4.7 of the FSP. Purge data for monitoring well sampling were recorded on electronic tablets and are included in **Appendix E**.

The groundwater samples were collected in 40 milliliter (mL) glass vials for VOC analysis by SW-846 Method 8260C, stored in coolers with wet ice, and sent by courier to TestAmerica Laboratories, Inc. of Pittsburgh, PA via Federal Express overnight delivery.

4.5 Investigation-Derived Waste Handling and Disposal

Investigation-derived waste (IDW) produced by drilling and sampling activities was containerized, labeled, handled, and disposed in accordance with subsection 4.2.5 of the FSP and Harley-Davidson's Waste Disposal Work Instructions (YS2.03.637).

5 RESULTS

Information learned about the physical characteristics of soil and bedrock, through field investigation and laboratory analyses, is described in the following sections. Groundwater potentiometric elevations, apparent lateral and vertical flow directions, and VOC groundwater chemistry data are also presented below.

5.1 Field Descriptions of Soil and Bedrock

Study Area soils tend to be fine-grained, primarily composed of silt and clay. Sand and gravel-size particles of weathered quartzite tend either to be absent, or where they occur, comprise a minor component of the soil. Soils that are predominantly sand and/or gravel are uncommon, and where they occur, they tend to be in thin layers.

The thickness of soil encountered is relatively thin in the northwest portion of the SPBA (as thin as 4 feet), and thickens to the east and to the south, as shown on **Figure 3**, Section A-A'. In MW-165, the western-most Study Area boring within the Site southern property boundary, bedrock was encountered at 4.5 feet bgs. To the east at MW-164, competent bedrock was encountered at 10.5 feet bgs. Both of these borings are underlain by fine-grained sandstone that has been recrystallized to pale brown quartzite. Farther to the east at MW-163 the bedrock surface is at a depth of 32.5 feet bgs, where gray limestone was encountered. Bedrock was not encountered farther east in the stratigraphic borings for wells MW-162 and MW-161, with drilling advancing to depths of 57 feet and 66 feet bgs, respectively. Existing wells MW-64D and MW-141A are located 40 and 31 feet northeast of MW-161, respectively. These wells encountered limestone bedrock at 63 and 60 feet bgs, respectively.

Bedrock was not encountered elsewhere during the drilling activities of this investigation except at soil vapor probe/well location SV/MW-171. The depth to bedrock is 34.8 feet bgs at SV-171, while ten feet to the southwest at MW-171 bedrock is 40 feet bgs, indicating the pinnacled nature of the carbonate bedrock surface. Existing borings MW-108D, east of MW-161, MW-109D, on Old Arsenal Road, west of the intersection with North Sherman Street, and MW-110, to the west on Old Arsenal Road, all encountered carbonate bedrock. **Figure 4** shows the approximated location of the contact between the quartzite (denoted by the symbol Cah) and the carbonate rock (denoted by the

symbol Cv). Below 29 feet bgs at MW-165 the sandstone is interbedded with a sugary-textured hard gray dolostone. Dolomitic limestone is present to the east at well location MW-163 and to the south, underlying the entire Canterbury Lane residential area. Structurally, this area occurs in a tight synclinal fold, with the older quartzite rocks wrapping around the west, north and east sides of the younger carbonates. The synclinal fold plunges to the south.

5.2 Particle Size Distribution Results and USDA Soil Texture Classifications in the Vadose Zone

For each soil boring location, four or five soil samples were selected to be analyzed for particle size distribution and soil moisture content, except MW-164 and MW-165, where shallow soils occur. Analyses of particle size and soil moisture content were performed by F.T. Kitlinski & Associates, Inc. of Harrisburg, PA. Each soil sample consisted of either a 2-inch or 3-inch diameter cylinder measuring 0.4 to 0.5 feet long, stored in a screw-top glass jar. All samples were selected from the vadose zone above the water table. An effort was made to select the finest textured layer in each boring, as well as the most commonly encountered and thickest soil strata samples for particle size and moisture content analysis based on soil texture field descriptions.

Soil moisture content was determined by oven drying. Particle size distribution was determined by performing a standard sieve test with sieve sizes varying from 1-inch to #200 (0.074-inch). Fines passing the #200 sieve were analyzed by a hydrometer test to determine percent silt and clay.

Particle size distribution reports are presented in **Appendix C**. The particle size distribution data were compared to retained samples of the tested material, and were used to augment/check the soil descriptions on the well logs. The percent sand, silt, and clay for each soil sample, as determined by the laboratory analyses, was plotted on a United States Department of Agriculture (USDA) soil texture trilinear diagram to determine the USDA soil texture classification. A trilinear diagram was constructed for each boring. The plots are located in **Appendix F**. The results generally plot in the loam, silt loam, silty clay loam and clay loam portions of the (USDA) trilinear diagram, with a very few samples classified as sandy loam and sandy clay loam. Forty-nine of the sixty-four samples tested exhibited more than 50% silt and clay by weight and are, therefore, considered fine-grained soils. This indicates that the soils in the vadose zone are predominantly fine-grained and they are widely present within the study area.

5.3 Groundwater Level Elevations and Apparent Flow Directions

Shallow groundwater level contours inferred from water level data recorded on April 14, 2015 are shown on **Figure 4** and in profile view on **Figure 3**. The groundwater elevation data suggests complex groundwater flow conditions within the Study Area.

5.3.1 Water Table Elevation Contours

The April water levels were selected for contouring because the February round was less complete. Water table elevation contours using these data are shown on **Figure 4**. While these contours suggest an apparent lateral groundwater gradient that slopes generally southward from the SPBA towards the off-Site residential area, there are significant anomalies in the pattern of these contours. For example, in the middle of the Canterbury Lane circle, apparent horizontal groundwater gradients diverge to the southwest and to the southeast. There is also an anomalously high water level in MW-173 at the intersection of Canterbury Lane and Old Arsenal Road. Likewise, the water level in MW-170, directly north of MW-173, is elevated compared to laterally adjacent wells MW-171 and MW-169.

In general, these apparent anomalous conditions are believed to reflect the effects of a strong vertical gradient downward from the saturated zone in the residual soil to the underlying carbonate bedrock described in the next subsection. As such, anomalies in the water table elevation are principally associated with variations in the balance between direct recharge to the saturated soils at the water table and the rate at which water is drained from this saturated soil to the underlying bedrock. The apparent north to south overall slope of the water table would thus mostly reflect the north-south slope of the piezometric surface in the underlying bedrock, rather than indicate north to south flow within the saturated soils.

Some evidence also suggests that the concentration of recharge may be responsible for the anomalously high water table elevations at MW-170 and MW-173. There is a storm sewer with a drop culvert at MW-170, which collects water from the eastern and western laterals of Canterbury Lane, and then conveys the storm water southward toward MW-173. It is suspected that the high water level in MW-173, and to a lesser extent in MW-170, result from storm drain leakage. The concentration of recharge to the groundwater from the storm drainage system may result in the

saddle formed beneath this section of Canterbury Lane, as shown on **Figure 4**. This saddle appears to split the groundwater flow beneath the neighborhood to the southeast and southwest. In addition to the two complete rounds of water levels, numerous partial rounds of water levels in these wells during construction, purging and sampling support this configuration, suggesting it is rather persistent between precipitation events.

5.3.2 Vertical Downward Gradients

As a result of observations from monitoring wells MW-64 S&D, in the southeast corner of the SPBA, a strong vertical downward gradient is known to exist, with water levels in MW-64S at a median elevation of 385 feet mean sea level (msl), which is generally 25 feet higher than MW-64D. The water level in MW-64S represents a water table condition, while the water level in MW-64D represents the piezometric water level in the deeper limestone aquifer, which that well penetrates. This condition essentially creates an underdrain system below the residuum, causing the downward vertical gradient to exceed the horizontal gradient.

To illustrate the strong downward vertical gradient that occurs in the residuum underlain by the limestone in the eastern corner of the SPBA and in the residential area to the south, cross sections A-A' and B-B' (**Figure 3**) were drawn with potentiometric contours and flow direction arrows honoring the water level data collected in the wells. These contours and flow arrows show a downward flow path of groundwater from the on-Site source area in the SPBA through the residuum into the underlying carbonate aquifer, with limited lateral migration southward. Although much of the vertical head differential dissipates as groundwater migrates southward, there is still 0.65 feet of vertical downward head between the residuum water level in MW-174 and adjacent bedrock well MW-110, illustrated on the southwestern end of cross section B-B'. The downward vertical gradient between the residuum and the bedrock persists throughout the residential neighborhood to the southern limits of the Study Area at Old Arsenal Road.

5.4 Groundwater Chemistry

Results of the two rounds of sampling and VOC analysis of groundwater samples collected from new and existing groundwater monitoring wells in the Study Area is presented on **Table 4**. Existing wells not sampled during this investigation were sampled in October of 2014, and these results are

also included on **Table 4**. **Figure 5** posts the spatial distribution in plan view of VOC groundwater chemistry results above the method detection limit for each monitoring well in the SPBA and the off-Site residential area to the south.

As expected from previous investigations, relatively elevated concentrations of TCE and PCE were detected in groundwater samples collected in wells MW-161 to MW-163, within the boundary of the Harley-Davidson property. The highest concentrations occur in MW-162, with concentrations of 190 micrograms per liter (μ g/l) of TCE and 700 μ g/l of PCE. Concentrations detected in groundwater samples collected in the western portion of the SPBA are lower, but remain somewhat elevated. Concentrations to the east, in groundwater samples collected from well MW-161 are also elevated, with concentrations of 100 μ g/l of TCE and 270 μ g/l of PCE.

Groundwater concentrations in the first east-west line of shallow wells south of the SPBA along the northern east-west segment of Canterbury Lane (MW-166, MW-167 and MW-168, **Figure 5**) show substantially lower TCE and PCE concentrations than the wells in the SPBA. The highest concentrations of these compounds on this line of wells occur in MW-167, the center well, with concentrations of 2.6 μ g/l of TCE and 8.6 μ g/l of PCE. To the east of this well, groundwater from MW-166 detected 1 μ g/l of TCE and 0.8 μ g/l of PCE. To the west, groundwater samples from MW-168 detected no VOCs. Low detections of trihalomethane compounds, bromodichloromethane and chloroform, were also detected in wells MW-166, MW-167 and MW-170. These compounds are commonly present in chlorinated municipal water supplies, suggesting the potential localized presence of leaking municipal water supply lines. The water used during drilling of these investigation borings was not chlorinated; therefore, the presence of these substances is not an artifact of the drilling. These substances were not detected in the line of wells to the north in the SPBA, except in trace amounts, and therefore are not considered related to the Site.

For the three wells along the southern east-west segment of Canterbury Lane, analysis of groundwater from two wells, MW-169 and MW-170, detected no TCE or PCE. Analysis of groundwater from MW-171, the western-most well on this leg of Canterbury Lane, detected 0.36J μ g/l of TCE and 2.4 μ g/l of PCE. Groundwater from this particular well also contained 2-butanone (methyl ethyl ketone [MEK]) at 57 μ g/l and trace concentrations of other compounds not considered to be COCs for the SPBA. It is noted, however, that there is a large differential between the first

and second round 2-butanone results for SPBA well MW-164. Because screening values for this compound are high (PADEP's MSC for used aquifers is 4000 μ g/l, and EPA's target groundwater concentration corresponding to target indoor air is 44,000 μ g/l), concentrations at the detected levels are not considered to be of concern.

Four shallow wells were constructed along Old Arsenal Road, which is the southern boundary of the residential area south of the SPBA. Groundwater samples analyzed from three of these wells had no detections of TCE or PCE. Groundwater from MW-174 detected 0.9 μ g/l of TCE and 5.6 μ g/l of PCE. There were also trace concentrations of trihalomethanes in three of the four wells.

Groundwater chemistry data collected in October 2014 from existing wells MW-109S and MW-110, located along Old Arsenal Road, and MW-108S, located east of the SPBA, were added to **Figure 5**. These wells were sampled in October 2014.

- Results of groundwater samples from MW-108S and MW109S detected no PCE or TCE indicating the eastern edge of the plume has been defined by this investigation.
- The sample collected from MW-110, screened in the shallow carbonate bedrock, showed concentrations of PCE (55 μg/l) and TCE (1.3 μg/l), somewhat higher than the shallow groundwater sample at adjacent well MW-174. The comparison shows a vertical chemical differential, and illustrates the importance of using the shallow component of groundwater for this vapor intrusion evaluation.

5.4.1 Screening Groundwater Concentrations

Following the process described in FSP Addendum #15, the results of groundwater sampling were evaluated using the USEPA's VISL Calculator (June 2015) to calculate the cumulative Cancer Risk (CR) and Hazard Index (HI) associated with maximum concentrations of all COCs constituting a VI concern detected at each monitoring well location.

The maximum concentration of each COC detected at each well was entered into this spreadsheet along with the temperature of groundwater derived from the average annual ambient air temperature in York, PA as an indicator of average groundwater temperature to calculate the VI CR and the VI Hazard Quotient (HQ). A groundwater-to-indoor air attenuation factor of 0.001 was used for these

calculations. The individual CR levels were summed for all COCs and compared to a Target Cancer Risk (TCR) of 10^{-4} and the individual HQs were summed to give the overall HI.

The work plan specified that the groundwater temperature used for the screening calculations was to be taken from the sampling records. A review of that temperature data, shown on **Table 5**, indicated a wide range of values, many of which are unrealistic for groundwater temperatures in York, PA. Our field measurements appeared to be variable, and probably were the result of the very low flows being produced from these low yielding wells, either caused by heating from the submersible pump or from the effects of air temperature and/or sunlight on the flow through cell.

For that reason, the average annual ambient air temperature (shown in **Appendix G**) was used in the VISL calculator. The average annual temperature is generally accepted as a good approximation of the groundwater temperature in Pennsylvania.

TABLE 5 STABILIZED TEMPERATURES OF GROUNDWATER SAMPLES USING LOW FLOW TECHNIQUES										
	Sampling	Sampling Event 2								
Well ID	Temp(°C)	Date	Temp([°] C)	Date						
MW-161	11.77	03/17/15	13.76	04/09/15						
MW-162	12.19	03/17/15	13.50	04/09/15						
MW-163	11.12	03/17/15	12.81	04/08/15						
MW-167	14.6	03/02/15	12.76	03/25/15						
MW-171	14.0	03/03/15	11.73	03/25/15						

VISL calculations were performed on groundwater sampling results of all newly installed shallow groundwater wells in the suspected source area on the fYNOP property. VISL calculations were also performed on groundwater sampling results from all newly installed shallow groundwater wells located off-Site, outside of the source area. **Appendix G** includes printed VISL spread sheet results and **Table 6** summarizes the screening results.

As expected, measured concentrations of TCE and PCE in samples from MW-161 and MW-162, the eastern-most wells on the Site property and in the suspected source area exceeded VISL screening criteria. MW-163, also on the Site property, with a maximum PCE concentration of 48 μ g/l and TCE concentration of 2.7 μ g/l, did not exceed VISL screening criteria. MW-165, with a maximum PCE concentration of 7.6 μ g/l and TCE concentration of 17 μ g/l, exceeded the screening criteria.

As summarized on **Table 6**, MW-167, the well with highest concentrations of TCE and PCE in the Canterbury Lane neighborhood, did not exceed the screening criteria as calculated by the VISL calculator, with a cumulative CR of 5 X 10^{-6} and an HQ of 0.3. Likewise, MW-171 fell below VISL's screening criteria with a cumulative CR of 9 X 10^{-7} and an HQ of 0.06. All other wells had lower concentrations, and the results included on **Table 6**, fell well below applicable screening criteria.

The sensitivity of the assumption to use the average annual ambient temperature was evaluated. The temperature for the off-site well with the highest concentrations of COCs (MW-167) was run through the VISL Calculator at 14.6°C, the highest sample temperature recorded in the field. The results were that the CR went from 4.95E-6 to 5.74E-6 and the HI went from 0.329 to 0.385. These results indicate that the decision to use the average annual ambient air temperature as the assumed groundwater temperature, which GSC feels is the more appropriate procedure, given the field results, does not significantly change the results of the screening process. Future work of this nature should make use of a calibrated in-well thermistor to avoid the potential of temperature changes resulting from the effects of sampling.

The FSP stated that for any monitoring location(s) within the residential area at which VOC concentrations observed in shallow groundwater exceeded a cumulative CR of 10⁻⁴ or a HI of 1, vadose zone investigations, including testing of undisturbed soil samples for physical characteristics and sampling of near-source soil gas (NSSG) at vapor probes, would be performed. Because the results indicate that neither the TCR nor the target HI was exceeded at any of the well locations in the Canterbury Lane/Old Arsenal Road residential area, vadose zone investigation was not necessary.

6 SUMMARY AND CONCLUSIONS

Historical accounts indicate that liquid waste containing VOCs was used to control weeds and reduce dust along the SPBA perimeter road. Previous investigations identify TCE and PCE as COCs in the SPBA. In 2005, results of a VI assessment of the SPBA, and the off-Site area to the south, concluded that the VI pathway due to volatilization from shallow groundwater is not complete (Langan, 2005). Thereafter, USEPA issued its Documentation of Environmental Indicator Determination finding that the VI pathway in the residential area off-Site in the vicinity of the SPBA was not significant (USEPA, 2005). The USEPA recently reviewed the 2005 VI assessment and concluded that the methodology and modeling approach that it previously approved for the 2005 VI assessment are no longer considered by USEPA to be reliable methods to estimate the potential for VI into neighboring residences. In August 2014, USEPA therefore requested more information to determine whether VI is a potentially complete pathway for COCs from the Site to enter neighboring residences.

A work plan, identified as Addendum #15, was sent to PADEP and USEPA. The plan was reviewed by USEPA, and after addressing comments, approved. The plan specified the use of USEPA's VISL calculator (Version 3.3.1, May 2014) pursuant to USEPA's current VI screening policy, to screen VOC concentrations in shallow groundwater in the wells and NSSG sample results. However, prior to completion of this report, a new version of the VISL calculator was released (June 2015), and the new version was used.

Fifteen stratigraphic borings were performed and a monitoring well was installed in each of the stratigraphic borings. Five of the monitoring wells were installed in the SPBA (see **Figures 1 through 3**). Ten monitoring wells were installed in the residential area south of the SPBA. Soils were sampled, and textures analyzed by a soils laboratory. Water levels in wells were measured, and two rounds of groundwater samples were collected and analyzed for VOCs.

Underlying soils in the vadose zone are classified by laboratory gradation analysis as loam, silt loam, silty clay loam and clay loam portions of the USDA trilinear diagram, and a few samples classified as sandy loam and sandy clay loam. The lateral groundwater gradient slopes generally southward from the SPBA towards the off-Site residential area (**Figure 3**). Cross sections A-A' and B-B' (**Figure 4**) illustrate the strong downward vertical gradient of the groundwater that occurs in the residuum underlain by the limestone in the eastern corner of the SPBA and in the residential area to the south, and a corresponding downward flow path of groundwater from the on-Site source area in the SPBA through the residuum into the underlying carbonate aquifer, with limited lateral migration southward. The downward vertical head between the residuum and the bedrock persists throughout residential neighborhood to the southern limits of the Study Area, marked by Old Arsenal Road.

Two rounds of groundwater sampling in new and adjacent existing wells were analyzed for VOCs. As expected from investigations conducted by Langan, (Langan, 2005) and from the results of groundwater chemistry from preexisting wells MW-64 S&D, concentrations of TCE and PCE in the SPBA (i.e., within the boundary of the Harley-Davidson property) are elevated. Groundwater concentrations in the newly installed shallow wells in the Canterbury Lane neighborhood show substantially lower TCE and PCE concentrations, and no other significant concentrations of other VOCs with respect to vapor intrusion potential. The highest concentrations of these compounds in shallow off-Site groundwater occur in MW-167, with concentrations of 2.6 μ g/l of TCE and 8.6 μ g/l of PCE.

The results of groundwater sampling were evaluated using the USEPA's VISL Calculator (June 2015) to calculate the cumulative CR and HI associated with maximum concentrations of all COCs constituting a VI concern. As expected, MW-161 and MW-162, the eastern-most wells on the Site property, and MW-165, further to the west, in the suspected on-Site source area exceed screening criteria. No groundwater chemistry results in off-Site wells exceed the screening criteria as calculated by the VISL calculator. The comparisons of the VISL results indicate that neither the TCR nor the target HI have been exceeded in groundwater sampled in the Canterbury Lane neighborhood. As a result of the shallow groundwater chemistry results the proposed vadose zone investigation was not conducted.

The results of this investigation will be incorporated into the groundwater remedial investigation (part 2) report and further evaluated in the groundwater risk assessment. The completion of these documents is scheduled for the first quarter of 2016.

7 REFERENCES

- GSC, 2011. Supplemental Remedial Investigation Groundwater Report (Part 1). September.
- GSC, 2012. Field Sampling Plan (FSP) for Part 2 of the Supplemental Groundwater Remedial Investigation. April.
- GSC, 2014. Quality Assurance Project Plan (QAPP) Former York Naval Ordnance Plant. June 2012, Revised August 2014.
- Langan, 2005. Indoor Vapor Pathway Screening Assessment (Draft), Supplemental RI Report, Harley-Davidson Motor Company Operations, Inc., York, Pennsylvania, March.
- USEPA, 2005. Documentation of Environmnetal Indicator Determination, RCRA Corrective Action, signed September 15.
- USEPA, 2014. Letter from Griff Miller of USEPA to Steve Snyder of GSC. October 31.

Email from Griff Miller to Stephen Snyder, August 14, 2014.

Tables

TABLE 1 PHYSICAL WELL DATA TABLE SPBA Report

former York Naval Ordnance Plant, York, PA

Well ID	Northing (Y)	Easting (X)	Ground Surface Elevation	Reference Point Elevation	Stickup	Surface Completion	Installation Date	Total Drilled Depth	Top of Well Screen Depth	Bottom of Well Screen Depth	Top of Well Screen	Bottom of Well Screen	Screen Length	Screen Diameter	Slot Size	Screen Material	Casing Diameter	Casing Material
	grid feet	grid feet	ft. amsl	ft. amsl	ft.			ft. bgs	ft. bgs	ft. bgs	ft. amsl	ft. amsl	ft.	in.	in.		in.	
MW-161	238989.580	2260208.866	413.78	415.92	2.14	Standpipe	2/10/2015	66.0	55.7	65.7	358.1	348.1	10	2	0.010	PVC	2	PVC
MW-162	238996.758	2260012.338	413.37	415.78	2.41	Standpipe	2/6/2015	57.0	43.0	53.0	370.4	360.4	10	2	0.010	PVC	2	PVC
MW-163	238999.212	2259838.321	416.97	419.41	2.44	Standpipe	2/4/2015	57.0	35.0	55.0	382.0	362.0	20	2	0.010	PVC	2	PVC
MW-164	238954.175	2259623.933	422.48	424.50	2.02	Standpipe	1/29/2015	53.0	43.0	53.0	379.5	369.5	10	2	0.010	PVC	2	PVC
MW-165	238842.029	2259411.882	418.74	419.41	0.67	Standpipe	1/2/2015	72.5	50.5	70.5	368.2	348.2	20	2	0.010	PVC	2	PVC
MW-166	238860.837	2260239.616	402.79	402.03	-0.76	Manhole	11/17/2014	60.0	41.0	51.0	361.8	351.8	10	2	0.010	PVC	2	PVC
MW-167	238861.218	2260043.563	399.55	399.07	-0.48	Manhole	12/4/2014	60.0	41.0	51.0	358.6	348.6	10	2	0.010	PVC	2	PVC
MW-168	238861.827	2259872.680	396.05	395.19	-0.86	Manhole	12/12/2014	57.0	31.0	41.0	365.1	355.1	10	2	0.010	PVC	2	PVC
MW-169	238579.721	2260197.951	389.87	389.43	-0.44	Manhole	2/5/2015	47.0	37.0	47.0	352.9	342.9	10	2	0.010	PVC	2	PVC
MW-170	238575.643	2259962.593	385.96	385.60	-0.36	Manhole	12/19/2014	40.0	21.3	31.3	364.7	354.7	10	2	0.010	PVC	2	PVC
MW-171	238616.679	2259762.499	387.01	386.75	-0.26	Manhole	1/21/2015	45.5	32.8	42.8	354.2	344.2	10	2	0.010	PVC	2	PVC
MW-172	238253.888	2260196.735	385.48	385.03	-0.45	Manhole	12/18/2014	40.0	27.5	37.5	358.0	348.0	10	2	0.010	PVC	2	PVC
MW-173	238249.237	2259945.012	382.07	381.57	-0.50	Manhole	12/10/2014	40.0	21.6	31.6	360.5	350.5	10	2	0.010	PVC	2	PVC
MW-174	238247.838	2259640.885	379.01	378.31	-0.70	Manhole	12/15/2014	35.0	21.0	31.0	358.0	348.0	10	2	0.010	PVC	2	PVC
MW-175	238248.740	2259407.100	376.49	376.18	-0.31	Manhole	1/7/2015	37.0	18.8	28.8	357.7	347.7	10	2	0.010	PVC	2	PVC
TABLE 3POTENTIOMETRIC ELEVATION DATASPBA Report

former York Naval Ordnance Plant, York, PA

Well ID	Reference Point Elevation (ft. amsl)	Depth to Water (ft. below RP)	Ground- water Elevation (ft. amsl)	Depth to Water (ft. below RP)	Ground- water Elevation (ft. amsl)
		2/20/2015		4/14/	2015
MW-64D	416.43	53.93	362.50	61.02	355.41
MW-64S	416.34	NM	NM	35.2	381.14
MW-108S	425.46	36.92	388.54	26.07	399.39
MW-109S	388.39	37.80	350.59	35.72	352.67
MW-110	378.36	27.96	350.40	25.85	352.51
MW-141A	416.96	NM	NM	47.94	369.02
MW-161	415.92	63.52	352.40	60.72	355.20
MW-162	415.78	46.20	369.58	40.93	374.85
MW-163	419.41	35.07	384.34	32.18	387.23
MW-164	424.50	38.00	386.50	37.67	386.83
MW-165	419.41	43.50	375.91	40.27	379.14
MW-166	402.03	45.39	356.64	38.99	363.04
MW-167	399.07	37.05	362.02	29.47	369.60
MW-168	395.19	21.92	373.27	18.46	376.73
MW-169	389.43	NM	NM	29.99	359.44
MW-170	385.60	29.22	356.38	23.75	361.85
MW-171	386.75	36.10	350.65	33.98	352.77
MW-172	385.03	32.70	352.33	29.75	355.28
MW-173	381.57	19.84	361.73	14.44	367.13
MW-174	378.31	27.50	350.81	25.15	353.16
MW-175	376.18	26.85	349.33	24.65	351.53

Table 4 Groundwater Chemistry Data Summary – Southern Property Boundary Area Vapor Intrusion Investigation Former York Naval Ordnance Plant - York, PA

	HD On-Site																
Location	n/ID M	IW-64S	MW-64S	MW-64D	MW-64D	MW-141A	MW-141A	MW-161	MW-161	MW-162	MW-162	MW-163	MW-163	MW-164	MW-164	MW-165	MW-165
Parameter Sample D	Date 9/	/12/13	4/16/15	10/22/14	4/14/15	10/21/14	4/15/15	3/17/15	4/9/15	3/18/15	4/10/15	3/17/15	4/8/15	3/16/15	4/8/15	3/17/15	4/10/15
TOTAL VOC		· · ·															
Total VOC		173	115	26.4	770	11.6	16.2	360.37	350.3	700	891.2	42.99	50.92	2.38	98.27	24.94	23.4
Volatile Organic Compound		ı		J			I		ļ		ļ						
1,1,1,2-Tetrachloroethane	:	10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	:	10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	1.2 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dioxane	2	000 U	200 U	200 U	500 U	200 U	200 U	200 U	200 U	800 U	800 U	200 U	200 U	200 U	200 U	200 U	200 U
2-Butanone		50 U	5 U	5.0 U	13 U	5 U	5.0 U	5.0 U	5.0 U	20 U	20 U	5.0 U	5.0 U	0.95 J	97	5.0 U	5.0 U
2-Hexanone		50 U	5 U	5.0 U	13 U	5 U	5.0 U	5.0 U	5.0 U	20 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone		50 U	5 U	5.0 U	13 U	5 U	5.0 U	5.0 U	5.0 U	20 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone		50 U	5 U	5.0 U	13 U	5 U	5.3	5.0 U	5.0 U	20 U	20 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acrylonitrile	2	200 U	20 U	20 U	50 U	20 U	20 U	20 U	20 U	80 U	80 U	20 U	20 U	20 U	20 U	20 U	20 U
Benzene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane	:	10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Disulfide		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	R	1.0 U	R	1.0 U	1.0 U	1.0 U	R
Carbon Tetrachloride		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorodibromomethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	:	10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	0.37 J	0.30 J	4.0 U	4.0 U	0.29 J	0.32 J	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	:	10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,2-Dichloroethene		10 U	1 U	1.0 U	2.5 U	1.4	1.4	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl tert-butyl ether		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene		63	70	19	520	6.8	6.9	270	250	540	700	40	48	0.47 J	0.51 J	7.6	7.4 J
Toluene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene		10 U	1 U*	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene		110	45	7.4	250	3.4	2.6	90	100	160	190	2.7	2.6	0.65 J	0.76 J	17	16 J
Vinyl Chloride		10 U	1 U	1.0 U	2.5 U	1 U	1.0 U	1.0 U	1.0 U	4.0 U	4.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Xylenes (Total)		30 U	3 U	3.0 U	7.5 U	3 U	3.0 U	3.0 U	3.0 U	12 U	12 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U

Table 4 Groundwater Chemistry Data Summary – Southern Property Boundary Area Vapor Intrusion Investigation Former York Naval Ordnance Plant - York, PA

LaceBarrier LaceBarrier Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>			Off-Site																							
Sample Map 1002/14 107.41 107.41 107		Location/ID	MW-108S	MW-108D	MW-109S	MW-109D	MW-166	MW-166	MW-167	MW-167	MW-168	MW-168	MW-169	MW-169	MW-170	MW-170	MW-171	MW-171	MW-172	MW-172	MW-173	MW-173	MW-174	MW-174	MW-175	MW-175
upper log image	Parameter	Sample Date	10/22/14	10/21/14	10/24/14	10/24/14	3/3/15	3/25/15	3/3/15	3/26/15	3/4/15	3/25/15	3/18/15	4/10/15	3/4/15	3/25/15	3/3/15	3/25/15	3/2/15	3/25/15	3/3/15	3/25/15	3/3/15	3/25/15	3/2/15	3/25/15
Saul OxC 1 1.2 6.6 6.7 4.7 4.8 1.0 1.0 2.7 7.1.0 8.1.0 1.0	TOTAL VOC	-							•	•		•	•	÷	•		•	•	•		•	• • •				
Volume Composed International Accession International Accession <thinternaticonal accession<="" th=""> <thinternational accession<="" td=""><td>Total VOC</td><td></td><td>1</td><td>1.32</td><td>8.6</td><td>6.77</td><td>4.7</td><td>4.19</td><td>15.04</td><td>11.81</td><td>0</td><td>0</td><td>0.22</td><td>0.14</td><td>0.79</td><td>0.27</td><td>77.928</td><td>45.53</td><td>0.73</td><td>0</td><td>0</td><td>0</td><td>7.08</td><td>6.99</td><td>2.47</td><td>0.9</td></thinternational></thinternaticonal>	Total VOC		1	1.32	8.6	6.77	4.7	4.19	15.04	11.81	0	0	0.22	0.14	0.79	0.27	77.928	45.53	0.73	0	0	0	7.08	6.99	2.47	0.9
11.1.2 11.1.2 10.0	Volatile Organic Compo	und							•	•		•	•	÷	•		•	•	•		•	• • •				
11.1. 11.1. 11.0. 10.0 <	1,1,1,2-Tetrachloroethar	ne	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11.2.2-relates 10.0	1,1,1-Trichloroethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.2.2-michnolesthame 1.00<	1,1,2,2-Tetrachloroethar	ne	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
11-belowemene 10u 10u 10u 10u </td <td>1,1,2-Trichloroethane</td> <td></td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 UJ</td> <td>1.0 U</td>	1,1,2-Trichloroethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.1-0e/constitue 1.0u	1,1-Dichloroethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
12-0bmomentame 100 100 100 <	1,1-Dichloroethene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
12-Deckingeringene 100	1,2-Dibromoethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
12.0 100 <td>1,2-Dichloroethane</td> <td></td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td>	1,2-Dichloroethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1x-Boxane 2000 <	1,2-Dichloropropane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2+beranne 500 5	1,4-Dioxane		200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U	200 U
2Heamone 500 501 500 50	2-Butanone		5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	57	32	5.0 U	5.0 U						
Ahemely-2-Pentanone Sou	2-Hexanone		5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	0.58 J	5.0 U	5.0 U	5.0 U						
Actement 50U 5U 50U	4-Methyl-2-Pentanone		5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.6 J	5.0 U	5.0 U	5.0 U						
Acycontrine 200 <th< td=""><td>Acetone</td><td></td><td>5.0 U</td><td>5 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>14</td><td>10</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td><td>5.0 U</td></th<>	Acetone		5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	14	10	5.0 U	5.0 U						
Beneme 10U 1U 4 0.87J 10U 10U 10U 1.0U 1.0U<	Acrylonitrile		20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	0.72 J	20 U	20 U	20 U						
Bernonchromerthane 10U 1U 10U	Benzene		1.0 U	1 U	4	0.87 J	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.4	0.17 J	1.0 U	1.0 U						
Bromadiciluitonembane 1.0.	Bromochloromethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodern 10.U	Bromodichloromethane		1.0 U	1 U	1.0 U	1.0 U	0.50 J	0.38 J	0.84 J	0.31 J	1.0 U	1.0 U	1.0 U	1.0 U	0.17 J	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.31 J	1.0 U	0.42 J	0.16 J
Bromethane 1.0U	Bromoform		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Garbon Dsulfide 1.0.U	Bromomethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride 1.0 1.0 1.0.1	Carbon Disulfide		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.29 J	0.31 J	1.0 U	1.0 U						
Chloroberzene 10 10 10 100	Carbon Tetrachloride		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorodibrommethane 1.0U 1.0U </td <td>Chlorobenzene</td> <td></td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td>	Chlorobenzene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloroethane 1.0U	Chlorodibromomethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.15 J	1.0 U
Chloroform 1 0.37 1.0 1.0 2.4 2 3 1.5 1.0 1.0 1.0 0.62 0.27 1.0 <th1.0< th=""> <th1.0< <="" td=""><td>Chloroethane</td><td></td><td>1.0 U</td><td>1 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1 U</td><td>1.0 U</td></th1.0<></th1.0<>	Chloroethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane 1.0U	Chloroform		1	0.37 J	1.0 U	1.0 U	2.4	2	3	1.5	1.0 U	1.0 U	1.0 U	1.0 U	0.62 J	0.27 J	1.0 U	1.0 U	0.73 J	1.0 U	1.0 U	1.0 U	1.7	0.50 J	1.9	0.74 J
cis-1,2-Dichloroethene 1.0U <	Chloromethane		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
cis-1,3-Dichloropropene 1.0U 1.0U 1	cis-1,2-Dichloroethene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene 1.0U	cis-1,3-Dichloropropene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl tert-butyl ether 1.0U 1.U 4.6 5.9 1.0U 1.0U <th1.0u< th=""> 1.0U 1.0U<!--</td--><td>Ethylbenzene</td><td></td><td>1.0 U</td><td>1 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1.0 U</td><td>1 U</td><td>1.0 U</td></th1.0u<>	Ethylbenzene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride 1.0U 1.U 1.0U 1.0U <td>Methyl tert-butyl ether</td> <td></td> <td>1.0 U</td> <td>1 U</td> <td>4.6</td> <td>5.9</td> <td>1.0 U</td> <td>1.0 U</td> <td>1.0 U</td> <td>1 U</td> <td>1.0 U</td>	Methyl tert-butyl ether		1.0 U	1 U	4.6	5.9	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene 1.0U	Methylene chloride		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene 1.0U 0.43J 1.0U 1.0U 0.80J 0.85J 8.6 7.6 1.0U 1	Styrene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.098 J	1.0 U	1.0 U	1.0 U						
Toluene 1.0U	Tetrachloroethene		1.0 U	0.43 J	1.0 U	1.0 U	0.80 J	0.85 J	8.6	7.6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1	2.4	1.0 U	1.0 U	1.0 U	1.0 U	4.7	5.6	1.0 U	1.0 U
trans-1,2-Dichloroethene 1.0U	Toluene		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.1	0.29 J	1.0 U	1.0 U						
trans-1,3-Dichloropropene 1.0 U	trans-1,2-Dichloroethene	e	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene 1.0 U 0.52 J 1.0 U 1.0 U 1.0 U 1.0 U 2.6 2.4 1.0 U	trans-1,3-Dichloroproper	ne	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride 1.0 U	Trichloroethene		1.0 U	0.52 J	1.0 U	1.0 U	1	0.96 J	2.6	2.4	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.14 J	0.36 J	1.0 U	1.0 U	1.0 U	1.0 U	0.37 J	0.89 J	1.0 U	1.0 U
Xylenes (Total) 3.0 U 3.	Vinyl Chloride		1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	Xylenes (Total)		3.0 U	3 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U

Table 6 VISL Screening Results

	SOURCE AREA (ON-SITE) WELLS										
		VISL Ca	lculated R	isk From I	Maximum	Reported (Groundwa	ter Concer	itration		
	MW	-161	MW	-162	MW	-163	MW	-164	MW	-165	
Chemical Name	al Name CR HQ CR HQ CR HQ						CR	HQ	CR	HQ	
1,1-Dichloroethene			No IUR	3.71E-03							
2-Butanone							No IUR	2.23E-05			
Chloroform	2.51E-07	3.00E-04			2.17E-07	2.59E-04					
Methylene chloride			1.05E-09	1.71E-04	1.73E-10	2.81E-05	2.33E-10	3.78E-05	2.56E-10	4.15E-05	
Tetrachloroethene	8.53E-06	2.21E+00	2.21E-05	5.72E+00	1.52E-06	3.92E-01	1.61E-08	4.17E-03	2.40E-07	6.21E-02	
Trichloroethene	8.30E-05	9.85E+00	1.58E-04	1.87E+01	2.24E-06	2.66E-01	6.31E-07	7.48E-02	1.41E-05	1.67E+00	
CUMULATIVE (SUM)	CUMULATIVE (SUM) 9.E-05 1.E+01 2.E-04 2.E+01 4.E-06 7.E-01 6.E-07 8.E								1.E-05	2.E+00	

		NEIGHBORHOOD (OFF-SITE) WELLS														
					VISL Ca	lculated R	isk From M	Maximum	Reported	Groundwa	ter Concer	tration				
	MW	-166	MW	-167	MW	-169	MW	-170	MW	-171	MW	-172	MW	-174	MW	-175
Chemical Name	CR	HQ	CR	HQ	CR	HQ	CR	HQ	CR	HQ	CR	HQ	CR	HQ	CR	HQ
2-Butanone									No IUR	1.31E-05						
2-Hexanone									No IUR	3.15E-05						
4-Methyl-2-Pentanone									No IUR	1.33E-06						
Acetone									No IUR	3.42E-07						
Acrylonitrile									4.90E-08	9.70E-04						
Benzene	4.66E-07 5.3															
Bromodichloromethane	2.89E-07	No RfC	4.85E-07	No RfC			9.81E-08	No RfC							2.42E-07	No RfC
Carbon Disulfide									No IUR	1.48E-04						
Chlorodibromomethane															2.76E-08	No RfC
Chloroform	1.63E-06	1.94E-03	2.03E-06	2.43E-03			4.20E-07	5.02E-04			4.95E-07	5.91E-04			1.29E-06	1.54E-03
Methylene chloride					1.66E-10	2.69E-05										
Styrene									No IUR	4.64E-06						
Tetrachloroethene	2.68E-08	6.95E-03	2.72E-07	7.03E-02					7.58E-08	1.96E-02			1.77E-07	4.58E-02		
Toluene									No IUR	2.79E-05						
Trichloroethene	8.30E-07	9.85E-02	2.16E-06	2.56E-01					2.99E-07	3.54E-02	l i		7.39E-07	8.76E-02		
CUMULATIVE (SUM)	3.E-06	1.E-01	5.E-06	3.E-01	2.E-10	3.E-05	5.E-07	5.E-04	9.E-07	6.E-02	5.E-07	6.E-04	9.E-07	1.E-01	2.E-06	2.E-03

Key:

CR - VI Carcenogenic Risk from VISL Calculated Indoor Air Concentration

HQ - VI Hazard from VISL Calculated Indoor Air Concentration.

IUR - The inhalation unit risk factor for the chemical. This is the potential carcinogenic risk per unit concentration exposure associated with inhalation of the chemical.

RfC - The reference concentration for the chemical from the EPA RSL worksheet. This is the potential noncancer hazard per unit concentration exposure associated with inhalation of the chemical.

Notes:

Modeled Exposure Scenario was Residential for All Wells

Target Risk for Carcinogens is 1.00E-04

Target Hazard Quotient for Non-Carcinogens is 1.0

Average Groundwater Temperature used for VISL was 11.7 degrees celcius which is the average annual air temperature for York, P/

No reported concentratons in well MW-168 or MW-173

Blanks indicate no concentration above the laboratory reporting limit.

Figures

Appendices

Appendix A

Monitoring Well Logs

GEOLOGIC LOG: MW-161

	PRC	JECT I	NFORMATION	DRILLING INFORMATION						
PROJEC	Г:	Harley Da	vidson	DRILLING CO	D.:	Ei	ichelbergers,	Inc.		
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER:		Sk	hane Albert			
JOB NO.	:	10012.26		RIG TYPE:	FTHOT	. G	eoprobe 7822 SA George	DT	e Samnling	
LOGGEI	DBY:	R. Ulrich		DEVELOPME	ETHOL NT DA	TE: 2/	12/15-2/13/1:	5, 2/20/15	o sumpung	
DATES I	ORILLED:	12/2914-12	2/30/14, 2/915-2/10/15	LOCATION:		Sa	outh Property	Boundary	Area	
NOTES	• Vacuum	excavation	to 5' 3" dia dual-tube direct puch macrocore	SURFACE FL	EVATI	ON 41	13.78' AMSI			
	advanced	to refusal	at 50'. 4 1/4 ID HSA advanced to 66'.	EASTING		22	260208.866			
	2" PVC r	nonitoring	well installed 2/11/15.	NORTHING		23	38989.580			
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WE CONSTR	LL UCTION	WELL CONSTRUCTION DETAILS	
□ -4						-4				
-						-				
-						-				
						-		a	6" Standnine with	
-2									locking cap	
ŀ						_			.	
-						_			cap	
-0					123	-0				
-			Very dark brown 10YR 2/2, Topsoil. Moist			_			Concrete surface pad	
-			Limestone GRAVEL fill Moist			_				
-						-			#1 Sand pack (1.0'-	
2			10YR 5/4 yellowish brown, fine to coarse SAN Clayey Silt, trace fine Gravel. Moist.	D, some		2		7	2.0')	
_			5YR 4/4 reddish brown Clayey SILT some fu	ne to coarse	<u> </u>	_		И		
_			Sand, trace fine Gravel. Moist.	ne to coarse		_		И		
-4									8" HSA borehole (0-	
-						-			66')	
-			Paddish vallow 7 5VP 6/6 SILT & CLAV litt	tle fine to	= : <u> </u>	_				
-			coarse Sand, little fine to coarse Gravel. Moist	tie fille to	Ξ:Ξ	-		K)		
-6					= : =	6		M		
			Light gray 5Y 7/2, coarse GRAVEL, trace fine Sand, trace Clavey Silt, Moist.	e to coarse		_		И		
_	1.6/5.0	G1 /1 ·	Vallaniah harran 10VD 5/4 fina ta arrang GAD			_		И	2" PVC riser, (0'-55.7')	
-8	4.6/5.0	S1/1 to S11/1	Clayey Silt, little fine Gravel. Moist.	ND, some	 					
-			Yellowish brown 10YR 5/4, Clavey SILT, little	e fine to		_				
-			coarse Sand, little fine to coarse Gravel. Moist	t.		L		r J		
-			Yellowish brown 10YR 5/4, fine to coarse GR.	AVEL, little		-		K)		
- 10			fine to coarse Sand, trace Clayey Silt. Moist.	/		- 10		Υ	Portland/benseal grout	
Ĺ			Yellowish red 5YR 5/6, Clayey SILT, little fin	e to coarse			ΙИ	И	(2.0'-49.8')	
Ļ			organic material at 10.3'.	ish brown		_		И		
-12			Yellowish red 5YR 5/6 fine to coarse GRAVE	EL, some		12		И		
-	5.0/5.0	\$1/2.to	Clayey Silt, little fine to coarse Sand. Moist.	,		F				
-	2.0, 2.0	S12/2	Reddish yellow 7.5YR 6/6, CLAY & SILT, so	me fine to		-		r J		
-			coarse Gravel, some fine to coarse Sand, trace Moist.	fine Gravel.		-		rj –		
- 14			Drownich wallow 10VD C/C CH T 1/41 C	and M-i-i		- 14		K]		
[DIOWNISH YELIOW IUYK 6/6, SILT, little fine Sa	and. Moist.			ΙИ	И		
			Brownish yellow 10YR 6/6, SILT, some fine C	Gravel, little	A:	Ľ		$ \rangle$		

GEOLOGIC LOG: MW-161

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 16			fine to coarse Sand. Moist. Brownish yellow 10YR 6/6, fine to coarse subangular quartzite GRAVEL, little fine to coarse Sand little Silt &		- 16 		
- 18	5.0/5.0	S1/3 to S12/3	Clay. Moist. Brownish yellow 10YR 6/6, SILT & CLAY and fine to coarse Sand, trace fine to coarse subangular quartzite Gravel. Moist		- - 		
-							
- 20			Brownish yellow 10YR 6/6, SILT & CLAY, trace fine Sand. Moist.		20 		8" HSA borehole (0- 66')
-			Brownish yellow 10YR 6/6, SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Moist.	H H H	-		
-22	5.0/5.0	S1/4 to	Brownish yellow 10YR 6/6, CLAY & SILT, some fine to coarse Sand, trace fine Gravel. Moist.		- 22 -		
		S12/4	Brownish yellow 10YR 6/6, SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist.	H:H: -:H:H: H:H	-		
- 24			Brownish yellow 10YR 6/6, SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Moist.		24 		
- 26			Light red 2.5YR 6/6, fine to coarse subangular to subrounded quartzite GRAVEL, some Silt & Clay, little fine to coarse Sand. Moist.		- 26		2" PVC riser, (0'-55.7')
-	5.0/5.0	\$1/5 to	Red 10R 5/6, CLAY & SILT, some fine to coarse Sand, little fine subangular to subrounded quartzite GRAVEL. Moist.		-		
- 28	5.0/5.0	\$12/5	Brownish yellow 10YR 6/8, Clayey SILT, some fine to coarse Sand, trace fine Gravel. Moist.		- 28		
- 30			Brownish yellow 10YR 6/8, fine to coarse subangular to subrounded quartzite GRAVEL, some Silt & Clay, little fine to coarse Sand. Moist.		- 30		Portland/benseal grout
-	3.4/2.5	S1/6 to S6/6	Reddish yellow 7.5YR 6/8, SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist. Mottled reddish brown.		-		(2.0-47.8)
- 32			Reddish yellow 7.5YR 6/8, CLAY & SILT, little fine to coarse Sand, trace fine Gravel. Moist. Mottled reddish brown.				
- 34	3.4/2.5	S1/7 to	Brownish yellow 10YR 6/8, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.		- 34		
-		S6/7	Brownish yellow 10YR 6/8, SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist. Wet 35.4'-	H : H - : H : : H : H	_		
- 36	5.0/2.5	S1/8 to	55.6 and 56.6-57.6.	н. н. : н. н. : н. н. :	- 36		
-		S6/8		H : H - : H : H H : H	-		
- 38					- 38 -		

GEOLOGIC LOG: MW-161

PROJECT: Harley Davidson

Page 3 of 4

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
10	3.3/2.5	S1/9 to S6/9					
- 40	1.1/2.5	61/10	Brownish yellow 10YR 6/6, CLAY & SILT, little fine to coarse Sand, little fine Gravel. Moist.		- 40		8" HSA borehole (0- 66')
- 42	4.4/2.5	S1/10 to S6/10	Brownish yellow 10YR 6/6, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Moist.		- 42		
-							2" PVC riser, (0'-55.7')
- 44	2.0/2.5	S1/11 to S4/11	No Recovery. Sample fell out of bottom of tube into borehole.		44 		
- 46	5.0/2.5	S1/12 to S6/12	Brownish yellow 10YR 6/6, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Moist. Wet 43.3'-43.7'.		- 		Portland/benseal grout (2.0'-49.8')
-48					- 48		
-	3.6/2.5	N/A	Yellowish brown 10YR 5/6 CLAY & SILT, little fine to coarse Sand, trace fine Gravel. Very moist with wet pockets & seams, wet below 49.5'.		-		
- 50 - -			Soil not sampled. The borehole was deepened with augers after macrocore refusal. The lower 15 feet of augers and cutter head were coated in Silt & Clay.		50 		Bentonite chip annular seal (49.8'-53')
-52							
- 54 -							#1 Sand pack (53'-66')
- 56 -							
- 58	N/A	N/A			- 58		2" PVC 10-slot screen, (55.7'-65.7')
- 60							
62					62		

	GROU PRO	NDWA Ject: H	TER SCIENCES CORPORATION		0	GEOLOGIC LO	G: MW-161 Page 4 of 4
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 64					- - 64		8" HSA borehole (0- 66')
66				Ξ.Ξ. Ξ.Ξ.Ξ. Ξ.Ξ.Ξ	- 66		2" PVC 10-slot screen, (55.7'-65.7')

GEOLOGIC LOG: MW-162

	PRC	ЈЕСТ I	NFORMATION	DRILLING INFORMATION					
PROJEC SITE LC	T: CATION:	Harley Da Former Yo	vidson vrk Naval Ordnance Plant, York, PA	DRILLING CO DRILLER: RIG TYPE:	D.:	Ei Sh Ga	ichelbergers, In hane Albert eoprobe 7822D	ıc. T	
JOB NO	.:	10012.26		DRILLING M	ETHOI): H	SA, Geoprobe I	- Dual-Tub	e Sampling
LOGGE	D BY:	R. Ulrich		DEVELOPME	ENT DA	TE: 2/	12/15-2/13/15		
DATES	DRILLED:	11/6/14, 12	2/29/14, 2/5/15-2/6/15	LOCATION:		Sa	outh Property E	Boundary	Area
NOTES	3: Vacuum advanced	excavation l to refusal	to 5'. 3" dia dual-tube direct push macrocore at 56.9'. 4 1/4 ID HSA advanced to 57'.	SURFACE EL EASTING	EVATI	ON 41	13.37' AMSL 260012.338		
DEPTH	RECOVERY	SAMPLE	SOIL DESCRIPTION	NORTHING	APHIC	DEPTH	WELI		WELL CONSTRUCTION
TEET					GR	TLET	Constities		DETAILS
-4						-4			
						- - 			6" Standpipe with locking cap
-0						- - 0		7777	Locking compression cap
-			Yellowish brown (10YR 5/4), Topsoil. Dry.			_			Concrete surface pad
-2			Cobbles, , little fine to coarse Sand, little Claye	ey Silt. Dry.		- 2			#1 Sand pack (1.0'- 2.0')
-			Brownish yellow (10YR 6/6), Clayey SILT, lit coarse Sand, trace fine Gravel. Dry.	tle fine to		_			
-44			Yellowish red (5YR 5/6), Clayey SILT, little f Sand, little fine Gravel. Moist.	ine to coarse		- 4 -			8" HSA borehole (0- 57')
6			Red (2.5YR 4/6), Clayey SILT, little fine to co little fine Gravel. Moist.	barse Sand,		- 6 			
	3.6/4.0	S1/1 to S8/1	Strong brown (7.5YR 5/6), fine to coarse SAN to coarse subangular Gravel, some Silt & Clay	D, some fine . Moist.		- - 8 -			2" PVC riser, (0'-43')
- 10						- 			Portland/benseal grout (2.0'-37')
- 12	4.0/4.0	S1/2 to S8/2	Red (2.5R 5/8), SILT & CLAY, little fine to co subangular to subrounded Gravel, trace fine to Moist.	oarse coarse Sand.		- 			
- 	3 3/4 0	\$1/3 to	Red (2.5R 5/8), SILT & CLAY, some fine to c subangular to subrounded quartzite Gravel, tra coarse Sand. Moist.	oarse ce fine to		- 			

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
ŀ		S8/3					
16 -			Reddish yellow (5YR 6/6), CLAY & SILT, some fine to coarse Sand, trace fine Gravel. Moist.				
- 18			Brownish yellow (10YR 6/6), CLAY & SILT, little fine to coarse quartzite Gravel, trace fine to coarse Sand. Moist. Reddish brown & white mottles.				
- 20	3.9/4.0	S1/4 to S8/4			- 20		
-					-		8" HSA borehole (0- 57')
- 22			Brownish yellow (10YR 6/8), SILT & CLAY, little fine to medium Sand. Moist. Mottled white.				
- - - 24	3.2/4.0	S1/5 to S7/5		H H H H	- - 		
- -			Brownish yellow (10YR 6/8), CLAY & SILT, trace fine to				2" PVC riser, (0'-43')
- 26 - -	4.0/4.0	S1/6 to	reddish brown.		- 26		
- 28		38/0			- 28		
- 30							Portland/benseal grout
-	4.0/4.0	S1/7 to S8/7	Reddish yellow (7.5YR 6/8), CLAY & SILT, little fine to medium Sand. Moist.				
- 32			Reddish yellow (5YR 6/8), CLAY & SILT, little fine to coarse Sand, little fine to coarse Gravel. Moist.				
- 31			Brownish yellow (10YR 6/6), SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist.		31		
-	4.0/4.0	\$1/8 to	Brownish yellow (10YR 6/6), fine to coarse subangular to subrounded quartzite GRAVEL, some Silt & Clay, little fine to coarse Sand. Moist.		-		
- 36		S8/8	Red (2.5YR 5/6), fine to coarse subangular to subrounded quartzite GRAVEL, little Silt & Clay, little fine to coarse Sand. Moist.		- 		
-			Brownish yellow (10YR 6/6), SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist.		-		Bentonite chin annular
- 38 -			Brownish yellow (10YR 6/6), SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.		- 38 -		seal (37'-41')

GEOLOGIC LOG: MW-162

PROJECT: Harley Davidson

Page 3 of 3

	DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
	- - 40 -	4.0/4.0	S1/9 to S8/9	Brownish yellow (10YR 6/6), CLAY & SILT, little fine to coarse Sand, trace fine to coarse Gravel. Moist. Coarse quartzite Gravel 39.0'-39.2'.		- 		Bentonite chip annular seal (37'-41')
	- 42 -	1.6/4.0	S1/10 to	No recovery.		- 42 		2" PVC riser, (0'-43')
	- 44 - -		S4/10	Brownish yellow (10YR 6/6), SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist. Coarse Gravel 43.9'-44.1'.		- 44 -		#1 Sand peak (41' 54')
-	- 46 -							#1 Sand pack (41-34)
	- 48 -	4.2/5.0	S1/11 to S10/11	Yellowish brown (10YR 5/6), CLAY & SILT, little fine to coarse Sand, little fine to coarse Gravel. Moist. Reddish brown mottles.		- 48		2" PVC 10-slot screen, (43'-53')
-	- 50 -			Yellowish brown (10YR 5/6), CLAY & SILT, trace fine Sand. Moist. Light yellowish brown (10YR 6/4), CLAY & SILT, some fine to coarse Sand, little fine Gravel. Moist.	H H H 111111111	- 50 		8" HSA borehole (0- 57')
	- 	5.0/4.2	S1/12 to S10/12	Light yellowish brown (10YR 6/4), CLAY & SILT, some fine to coarse Sand. Moist.		- 		
	- - 54 -			Light yellowish brown (10YR 6/4), fine to coarse subangular to subrounded quartzite GRAVEL, some fine to coarse Sand, some Silt & Clay. Moist.		- 54		
	- - - 56	4.2/2.7	S1/13 to S6/13	Yellowish brown (10YR 5/4), SILT & CLAY,some fine to coarse Sand, some fine to coarse Gravel. Moist. Wet seam of Sand at 55.6'.		- - 56		Bentonite chip annular seal (54'-55.5')
	-			coarse Sand, trace fine Gravel. Moist. Reddish brown mottles.				(55.5'-57')
				Yellowish brown (10YR 5/6), SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Moist. Reddish brown mottles.				
				Reddish brown (5YR 5/4), fine to coarse SAND, some Silt &				

Clay. Wet.

GEOLOGIC LOG: MW-163

	PROJECT INFORMATION			DRILLING INFORMATION					
PROJEC	Т:	Harley Da	vidson	DRILLING CO	D.:	Ei	chelbergers,	Inc.	
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER:		Sh C	ane Albert	את	
JOB NO.	:	10012.26		DRILLING METHOD: HSA, Geoprobe Dual-Tube Sampling, Air Rota					be Sampling, Air Rotary
LOGGEI	OBY:	R. Ulrich		DEVELOPME	NT DA	TE: 2/	12/15		1 8
DATES	DRILLED:	11/4/14, 1/	/30/15, 2/2/15-2/4/15	LOCATION:		Sa	outh Propert	y Boundary	Area
NOTES	NOTES: Vacuum excavation to 5'. 3" dia dual-tube direct push macrocore					ON 41	6.97' AMSL	,	
	advanced	l to refusal	at 32.5'. 6 1/4 ID HSA overdrilled to 32.5.	EASTING		22	259838.321		
	5" hamm	er bit adva	nced to 57' with air rotary. Well constructed 2/4/	NORTHING		23	38999.212		1
DEPTH	RECOVERY	SAMPI F	SOIL DESCRIPTION		PHIC	DEPTH	WE	LL	WELL CONSTRUCTION
FEET					GRA	FEET	CONSTR	UCTION	DETAILS
□ -4						-4			
-						-			
-						-			
						-			6" Standnine with
- -2						2			locking cap
_						_			
-						-			Locking compression cap
-0					123	0			
-			Very pale brown (10YR 7/4), Topsoil. Moist.			_			Concrete surface pad
-			Brownish vellow (10VR 6/6) Clavey SILT lit	tle fine to	<u>& & /</u>	-			
			coarse Sand, little fine to coarse Gravel. Moist			-			#1 Sand pack (1.0'-
$^{-2}$						2			2.0')
								K	
-						_			
-4									10" USA borebele (0
-						-		И	32.5')
-			Stars a busine (7 SVD 5/C) Observe SU T 1:41-	c		_			
F			Sand, trace fine Gravel. Moist.	the to coarse		_			
-6			Red (2.5YR 5/6), SILT & CLAY, little fine to	coarse Sand.		6			
			trace fine to coarse Gravel. Moist.	/	OYV.				
	4.0/4.0	S1/1 to S10/1	Red (2.5YR 5/6), fine to coarse GRAVEL, littl	e fine to		_			2" PVC riser, (0'-35')
-8			coarse Sand, trace Clayey Silt. Moist. Gravel quartzite.	is SA-SR	<u>=:</u>				
F			Ped (2 5VP 5/6) SILT & CLAV little fine to	coarse Sand		_			
-			trace fine to coarse Gravel. Moist.	coarse Sand,		_			
-			Red (2.5YR 5/6), SILT & CLAY, some fine to	coarse Sand,		-			
- 10			trace fine Gravel. Moist.			- 10			Portland/benseal grout
[Reddish brown (5YR 5/4), Clayey SILT, trace	fine to coarse		_			(2.0-28.5)
ļ	4.0/4.0	S1/2 to S10/2	Sand, trace fine Gravel. Moist.			Ļ		Y	
-12	310		Red (2.5YR 5/6), Clayey SILT, some fine to m	edium Sand, 7' and 12.6'		12			
ŀ			race the Gravet. Worst. Graveny seams at 9.	/ anu 12.0.		L			
ŀ			Red (10R 4/6), CLAY & SILT, trace fine to co	arse Sand,	<u></u> ;	L		И	
F			trace fine to coarse Gravel. Moist.			_			
- 14			Red (10R 4/6), CLAY & SILT, some fine to co trace fine to coarse Sand Moist	oarse Gravel,		- 14			
[and the to course build. Whist.						
Γ	4.0/4.0	S1/3 to			I <u>T:</u> T	Γ		arepsilon	

GEOLOGIC LOG: MW-163

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS	
- 16 		S10/3	Red (2.5YR 5/6), CLAY & SILT, trace fine to medium Sand. Moist.					
- 18			Red (2.5YR 5/6), CLAY & SILT, some fine to coarse Gravel, trace fine to coarse Sand. Moist. Gravel is quartzite.	H : H - : H : H - : H : H - : H : H				
- 20	4.0/4.0	S1/4 to S10/4	Reddish yellow (5YR 6/6), Clayey SILT, some fine to coarse Sand, trace fine Gravel. Moist.				10" HSA borehole (0- 32.5')	
- 22	4.0/4.0	S1/5 to S10/5	Yellowish red (5YR 5/6), SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist.		- 22		2" PVC riser, (0'-35')	
- 24				Brownish yellow (10YR 6/6), Clayey SILT, little fine to medium Sand, trace fine Gravel. Moist.		- 24		
-26			Yellowish red (5YR 5/6), Clayey SILT, some fine to coarse Gravel, little fine to coarse Sand. Moist. May be sluff?		- 26			
		<i></i>	Reddish yellow (7.5 YR 6/8), CLAY & SILT, little fine to coarse Gravel, trace fine to coarse Sand. Moist.				Portland/benseal grout (2.0'-28.5')	
- 28	4.0/4.0	\$1/6 to \$10/6	Brownish yellow (10YR 6/8), subrounded to rounded fine to coarse Gravel, some fine to coarse Sand, trace Silt. Wet.					
-			Brownish yellow (10YR 6/8), fine SAND,little Silt. Wet.				Dentenite shin envolue	
- 30			coarse GRAVEL, little fine to coarse Sand, little Clayey Silt. Wet.				seal (28.5'-32.8')	
-	3.6/3.5	S1/7 to S10/7	Brownish yellow (10YR 6/6), subrounded to rounded fine to coarse GRAVEL, little fine to coarse Sand, little Silt & Clay. Wet.					
- 32			Brownish yellow (10YR 6/8), CLAY & SILT, some fine to coarse Sand, trace fine Gravel. Coarse Sandstone Gravel 32.2-32.4. Limestone shards in toe of macrocore at 32.5'. Moist.				5" air rotara barabala	
			Hard, slightly weathered, gray (N5/) LIMESTONE. Dry. Thin calcite veins present.				(32.5'-57')	
- 36			Void filled with Sand and Gravel from 35.5'-37', Silt & Clay from 37'-39'.				#1 Sand pack (32.8'- 56')	
- 38			Hard, moderately weathered, gray (N6/) LIMESTONE.		- 38 -		2" PVC 10-slot screen, (35'-55')	

	GROU	NDWA	TER SCIENCES CORPORATION	(GEOLOGIC LO	G: MW-163	
	PRO.	JECT: E	Iarley Davidson	Page 3 of 3			
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 40 - 42 - 42 - 44 - 46			Solution features evident. No returns. No sound from the hammer bit, downward resistance indicates sediment is present, presumably Silt & Clay. From 49'-51' hammer bit produces soft thuds, suggesting more resistant material such as gravel or weathered bedrock.		- 40 - 40 - 42 - 42 - 44 46 46		5" air rotary borehole (32.5'-57') #1 Sand pack (32.8'- 56')
- 48 - -					- 48 -		
- 50			No returns. Hammer bit sounds as if in competent rock. Limestone dust on hammer bit when removed from borehole.				2" PVC 10-slot screen, (35'-55')
- 52							
- 56					— 56 —		Collapsed formation (56'-57')

GEOLOGIC LOG: MW-164

	PROJECT INFORMATION				DRILLING INFORMATION				
PROJEC	Г:	Harley Da	vidson	DRILLING CO	D.:	ŀ	Eichelbergers, Inc.		
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER: Shane Albert					
JOB NO.	:	10012.26		RIG TYPE: Geoprobe 7822DT					
LOGGED BY: B Ulrich				DRILLING METHOD: HSA, Air Rotary					
DATEGI						S 112. 2	South Property Bounda	rv Area	
DATEST	DRILLED:	11/4/14, 1/	29/15						
NOTES	Vacuum	excavation	to 5'. 6 1/4 HSA advanced to refusal at 10.3'.	SURFACE EL	EVAT	ION 4	422.48' AMSL		
	5" hamm	er bit advar	need using air rotary to 53'.	NORTHING		4	2259623.933 238954 174		
	2 1 VCI	nonitoring		HORTHING	D	-		WELL	
DEPTH	RECOVERY	SAMPLE	SOIL DESCRIPTION		APHIC	DEPTH	I WELL	CONSTRUCTION	
FEET					GR	FEEI	CONSTRUCTION	DETAILS	
□ -4						-4			
-						-			
-						-			
-						-			
2						2		6" Standpipe with	
-						-		locking cup	
-						-		Locking compression	
-						-		cap	
-0			Vellowish brown (10VR 5/6) fine to coarse G	RAVEL little		-0			
-			fine to coarse Sand, little Clayey Silt. Moist.	KAVEL, IIUC		-		Concrete surface pad	
-						}			
-								#1 Sand pack (1.0'-	
-2			Light brown (5YR 5/6) weathered sandstone (obbles &		-2		3.0')	
-			Gravel, little fine to coarse Sand, little Clayey	Silt. Moist.					
-						F			
-4					O_{A}	-4		10" HSA borehole (0-	
								10.5)	
			No returns. Augers are chattery as if in Cobble	es & Gravel.					
-6						-6			
L								2" PVC riser, (0'-43')	
_			No returns. Slow progress with augers, grinding	ng as if in					
-8	No recovery		weathered bedrock.			-8			
-	5					-			
-						_		Doutlond/honcool arout	
-					••••	-		(3'-37')	
-10						- 10			
-			Soft to very soft, highly weathered, brown (10)	YR 4/3) to		_			
-			light yellowish brown (10YR 6/4), fine-grained	1	••••	-		5" air rotary borehole	
-			SANDSTONE. Locally recrystallized to Quar	tzite.		-		(10.3'-53')	
-12	air				••••	- 12			
F	rotary					┠	I HH		
-	cuttings					ŀ			
-						\mathbf{I}			
- 14						- 14			
F						F	I 11		
F						-	ГИИ		

GROUNDWATER	SCIENCES	CORPORATION
UNUUNUMAIEn	SCIENCES	CUNFUNAIIUI

PROJECT: Harley Davidson

GEOLOGIC LOG: MW-164

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 16					- 16 		
- 18					- - 18 -		
- 20	air				- 		5" air rotary borehole
- 22	cuttings						(10.5-55)
- 24					- - 		2" PVC riser (0'-43')
- 26							2 1 (0 45)
					-		
-28			Medium hard to soft, moderately weathered, very pale brown (10YR 7/3), QUARTZITE.				Portland/benseal grout (3'-37')
- 30					30 		
- 32							
- 34					- 34 		
- 36					- 36 		
- 38					- 38 -		Bentonite chip annular seal (37'-40')

	GROU	NDWA	TER SCIENCES CORPORATION		0	GEOLOGIC LO	G: MW-164
	PRO	JECT: H	Harley Davidson				Page 3 of 3
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 40	air				- 40		Bentonite chip annular seal (37'-40')
-	rotary cuttings						2" PVC riser, (0'-43')
- 42 -					42 -		#1 Sand pack (40'-53')
- 44 -							2" PVC 10-slot screen, (43'-53')
- 46 -			Wet fracture at 46.5'.		- 		5" air rotary borehole (10.3'-53')
- 48			Soft zone 47.5'-48'.				
- 50							
- 52					52		

Г

GEOLOGIC LOG: MW-165

	PROJECT INFORMATION			DRILLING INFORMATION					
PROJEC	T:	Harley Da	vidson	DRILLING CO.: Eichelbergers, Inc.					
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER: Shane Albert					
JOB NO.	:	10012.26		DRILLING M	ETHO	Са С: Н	eoprobe 7822 SA. Air Rotai	DI rv	
LOGGEI	OBY:	R. Ulrich		DEVELOPMENT DATE: $2/20/15$					
DATES I	DATES DRILLED: 11/4/14, 2/12/15					Sa	outh Property	Boundary	Area
NOTES	: Vacuum	excavation	to 4.5'. 6 1/4 ID HSA advanced to refusal at 4.5'	SURFACE EL	EVAT	ION 41	8.74' AMSL		
	5" hamm	er bit advar	nced using air rotary to 72.5'.	EASTING		22	259411.882		
	2" PVC 1	monitoring	well installed 2/13/15 & 2/18/15.	NORTHING		23	38842.029		
DEPTH	RECOVERY	SAMPLE	SOIL DESCRIPTION		APHIC	DEPTH	WEI		WELL CONSTRUCTION
FEET					GR/	FEET	CONSTR	UCTION	DETAILS
□ -4					1	-4			
-						_			
-						_		1	
									6" Standpipe with
-									locking cap
-						_			Locking compression
-						_			cap
-0			Vellowish brown (10VR 5/6) Clavey SILT lit	tle fine to		-0			
-			coarse Sand, little fine to coarse GRAVEL. M	oist.		-			Concrete surface pad
-2						_2			#1 Sand pack (1.0'- 2 0')
-						-			,
-									10" HSA borehole (0-
-			Light reddish brown (5YR 6/3), weathered san	dstone		-			4.5')
-4			Silt. Moist.	ace Clayey		-4			
-			Moderately hard to medium hard, moderately v	weathered,		-			
	air		olive brown (2.5Y 4/3), fine-grained SANDST	ONE.		_		L	5" air rotary borehole $(4.5'-72.5')$
-6	cuttings					-6			(4.5 /2.5)
-			Moderately hard to soft, moderately to highly we light value wish brown $(10 \text{ VP } 6/4)$ fine grained	veathered,		-		[]	
-			SANDSTONE.	I		-		FI	
-						-		1	
-8						-8		Η	2" PVC riser, (0'-50.5')
-								И	
								4	
- 10						-10			
-						-			
-						-		Í]	Portland/benseal grout
-						-		FI	(2'-42.5')
- 12			Hard to moderately hard, moderately weathered	d, light	••••	-12	1	1	
Ļ			yellowish brown (10YR 6/4), fine-grained SAN	IDSTONE.		Ĺ		И	
Ļ						_		И	
- 14						-14		И	
-						-		Ц	
F						-			

COOUNDWATED	COLENCES	CORRORATION
GRUUNDWAIER	SUIENLES	CURPURATION

GEOLOGIC LOG: MW-165

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 16					- 16 -		
- 18					- - 		
- 20	air				- 		5" air rotary borehole $(4, 5, 72, 5)$
- 22	cuttings				- 		(4.5 (2.5)
- 24			Medium to very soft, highly weathered, dark yellowish brown (10YR 4/4), fine-grained SANDSTONE.		- - 24		
- 26							2" PVC riser, (0'-50.5')
-					-		
- 28			Hard, slightly weathered, gray (N5/ to N6/), DOLOSTONE.		- 28		
- 30					— 30 —		Portland/benseal grout (2'-42.5')
- 32			Moderately hard, moderately weathered, grayish brown (10YR 5/2), fine-grained SANDSTONE.				
- 34					- 34 		
- 36					- 36 		
- 38			Moderately hard, moderately weathered, grayish brown (10YR 5/2), fine-grained SANDSTONE; with interbedded		- 38 		

GROUNDWATER	SCIENCES	CORPOR	ATION
	Seihiiehs		

GEOLOGIC LOG: MW-165

PROJECT: Harley Davidson

Page 3 of 4

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 40	air		hard, slightly weathered, gray (N5/ to N6/), DOLOSTONE.		- - 40		Portland/benseal grout
- 42	rotary cuttings				- 42		(2'-42.5')
-					-		2" PVC riser, (0'-50.5')
44 - -					44 -		Bentonite chip annular seal (42.5'-47.5')
- 46 -							
- 48							#1 Sand pack (47.5'- 72.1')
- 50 -			Hard, slightly weathered, gray (N5/ to N6/), DOLOSTONE. Texture is sugary.		- 50 		
- 52			Moderately hard, moderately weathered, grayish brown (10YR 5/2) fine-grained SANDSTONE		- 		2" PVC 10-slot screen, (50.5'-70.5')
- - 54 -					- - 54		5" air rotary borehole (4.5'-72.5')
- 			Hard, slightly weathered, gray (N5/ to N6/), DOLOSTONE with sugary texture; with interbedded moderately hard, moderately weathered, grayish brown (10YR 5/2), fine-grained SANDSTONE.		- 		
- 58					- 58 		
- 60					- 60 -		
62					62		

	GROU		TER SCIENCES CORPORATION	GEOLOGIC LOG: MW-165 Page 4 of 4						
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS			
64					- - 		2" PVC 10-slot screen, (50.5'-70.5')			
- 	air rotary cuttings				- 66 		#1 Sand pack (47.5'- 72.1')			
- 68 - - - 70					- 68 70		5" air rotary borehole (4.5'-72.5')			
- 72							Collapsed formation (72-1'-72.5')			

GEOLOGIC LOG: MW-166

PROJECT INFORMATION				DRILLING INFORMATION						
PROJEC	DRILLING CO.: Eichelbergers, Inc.									
SITE LOCATION: Former York Naval Ordnance Plant, York, PA				DRILLER: Shane Albert						
JOB NO.: 10012.26				KIG I YPE: Geoprobe 7822DT DRILLING METHOD: Geoprobe Dual-tube sampling						
LOGGEI	OBY:	KB Flemir	ıg	DEVELOPME	DEVELOPMENT DATE: 1/7/15, 1/9/15, 1/15/15-1/16/15					
DATES I	DRILLED:	11/12/14-1	1/17/14	LOCATION: Northeast Canterbury Lane						
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE EL	EVATI	ON 40	02.79' AMSL			
	advanced	l to 60'. 4 1	1/4 ID HSA overdrilled to 60'.	EASTING		22	260239.616			
	2" PVC 1	nonitoring	well installed 12/9/14.	NORTHING		2:	38860.837			
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WELI CONSTRU	L CTION	WELL CONSTRUCTION DETAILS	
			Asphalt and gravel base			-0			Flushmount manhole	
-			Asphan and graver base.			_			completion and concrete pad	
-2			Brown (7.5 YR 4/4) Sub-angular to sub-round coarse GRAVEL, little fine to coarse sand, littl moist.	ed fine to le clayey silt,		- - 2			Locking compression cap #1 Sand pack (1.0'- 2.5')	
- - 4						- 4 -			8" HSA borehole (0- 60')	
- 6 -	4.0/4.0	S1/1 to S10/1	Brownish yellow (10 YR 6/6) CLAY and SILT coarse Gravel, little fine to coarse Sand, moist. quartzite cobbles 7.5'-7.8'.	Г, little fine to Coarse		- 6 			2" PVC riser, (0'- 41')	
			Brownish yellow (10 YR 6/8) SILT, some fine sub-rounded quartzite Gravel, moist.	Sand, trace						
- 10			Red (2.5 YR 4/8) SILT and CLAY, little fine t trace fine Gravel, moist.	o coarseSand,	H : H : H : H	- 10 			Portland/benseal grout (2.5'-36')	
- - 12 -	4.0/4.0	S1/2 to S10/2	Brownish yellow (10 YR 6/8) SILT & CLAY, medium Sand, trace fine Gravel, moist.	little fine to		- 12 				
- 14			Brownish yellow (10 YR 6/8) CLAYEY SILT Sand, trace sub-angular quartzite Gravel, large cobbles 13.7'-13.8', moist.	, some coarse quartzite		- 14				
-	4.0/4.0	S1/3 to S10/3	Brownish yellow (10 YR 6/8) CLAYEY SILT coarse GRAVEL, gravel is cobble to pebble size trace fine Sand, moist.	and fine to ze quartzite,		-				
- 16 -			Brownish yellow (10 YR 6/8) grading to red (2 CLAYEY SILT, little fine-medium Sand, trace moist.	2.5 YR 5/8) e coarse Sand,		— 16 - -				
- 18			Yellowish Red (5 YR 5/8) CLAYEY SILT and sub-angular to sub-rounded GRAVEL,, trace c moist.	l fine to coarse oarse Sand,		- 18				
ŀ	4.0/4.0	S1/4 to	Sub-angular quartzite GRAVEL and medium t SAND, some Silt, trace fine Sand, moist.	o coarse		-				

GEOLOGIC LOG: MW-166

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 20		S10/4	(5 YR 5/8) to (2.5 YR 4/8) CLAY & SILT, some fine to medium Sand, moist.				8" HSA borehole (0- 60')
-			Gray, Coarse SAND and fine GRAVEL quartzite, moist.				
- 22			Brownish yellow (10 YR 6/8) SILTY CLAY, trace fine Sand, moist.		- 22		
- 24 -	4.0/4.0	S1/5 to S10/5	(2.5 YR 4/8) CLAYEY SILT and coarse sub-angular to sun- rounded quartzite GRAVEL, trace fine Sand, trace coarse Sand, moist.		- 24 		
- 26			Yellowish Red (5 YR 5/8) SILT & CLAY, some fine to medium Sand, trace fine Gravel, moist.		- 26		2" PVC riser, (0'- 41')
-28	4.0/4.0	S1/6 to S10/6			- 28		
- 30 -			Yellowish Red (5 YR 5/8) CLAYEY SILT, little fine to medium Sand,m trace coarse Sand, moist.				Portland/benseal grout (2.5'-36')
- 32	4.0/4.0	S1/7 to S10/7	Yellowish Red (5 YR 5/8) fine to coarse SAND and Clay & Silt, some fine to coarse quartzite Gravel, moist.		- 32		
-			Brownish yellow (10 YR 6/8) CLAY and SILT, little coarse Sand, trace fine Gravel, moist.	= : H : : H : H	-		
- 34			Brownish yellow (10 YR 6/8) CLAYEY SILT, some medium to coarse Sand, trace fine Sand, trace fine Gravel, moist.		34		
-	4.0/4.0	S1/8 to	Brownish yellow (10 YR 6/8) CLAYEY SILT, some coarse Sand, little fine Gravel, trace coarse Gravel, moist.				
- 36		210/0	Brownish yellow (10 YR 6/8) CLAYEY SILT, some medium to coarse Sand, trace fine Sand, trace fine Gravel, moist.		— 36 -		
- 38 -			Brownish yellow (10 YR 6/8) CLAYEY SILTand fine to coarse Sand, trace fine to coarse Gravel, trace fine , moist. trace black streaking.				Bentonite chip annular seal (36'-39')
40	4.0/4.0	S1/9 to S10/9	Drownish vollow (10 VD 6/2) CLAV & SUT some first				#1 Sand pack (39'-52')
- 42			Brownish yellow (10 Y K 6/8) CLAY & SIL1, some fine to coarse Sand, little fine to coarse Gravel, moist. some black streaking, coarse Sub-rounded to sub-angular quartzite Gravel 40.6'-40.7', 42.4'-42.5', 43', 43.5', 45', 45.5'. 50'-53'. Wet at 53'.				2" PVC 10-slot screen, (41'-51')

PROJECT: Harley Davidson

GEOLOGIC LOG: MW-166

Page 3 of 3

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 	4.0/4.0	S1/10 to S10/10			- 		2" PVC 10-slot screen, (41'-51')
- 46 -	4.0/4.0	\$1/11 to					
- 48 -		58/11			48		#1 Sand pack (39'-52')
- 50	4.0/4.0	\$1/12 to					
- 52 -		S8/12	Brownish yellow (10 YR 6/8) to Yellowish Red (5 YR 5/8) fine to medium SAND and fine GRAVEL, some Clayey Silt, wet.		- 		8" HSA borehole (0- 60')
- 54 -	2.0/2.0	S1/13 to S4/13	Brownish yellow (10 YR 6/8) to Yellowish Red (5 YR 5/8) CLAYEY SILT and fine to medium SAND, little coarse Sand, trace fine Gravel, wet.				
- 			Brownish yellow (10 YR 6/8) fine to coarse SAND and fine GRAVEL, some Clayey Silt, wet. Brownish yellow (10 YR 6/8) fine to medium SAND and CLAYEY SILT, trace coarse Gravel, wet.		- 56		Bentonite chip annular seal (52'-60')
-58	5.2/5.0	S1/14 to S10/14	Brownish yellow (10 YR 6/8) CLAYEY SILT, some medium to coarse Sand, trace fine Sand, trace coarse Gravel, wet.				

GEOLOGIC LOG: MW-167

	DRILLING INFORMATION									
PROJEC	DRILLING CO.: Eichelbergers, Inc.									
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER: Shane Albert						
JOB NO.	:	10012.26		RIG TYPE: Geoprobe 7822DT DRILLING METHOD: HSA Geoprobe Dual-tube sampling						
LOGGEI	OBY:	R. Ulrich		DEVELOPMENT DATE: 1/9/15, 1/15/15-1/16/15						
DATES	DRILLED:	11/24/14, 1	12/4/14	LOCATION: North central Canterbury Lane						
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE EL	EVAT	ION 3	99.55' AMSL			
	advanced	l to 60'. 4 1	1/4 ID HSA overdrilled to 60'.	EASTING		22	260043.563			
	2" PVC 1	nonitoring	well installed 12/4/14-12/5/14.	NORTHING		2.	38861.218		1	
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WE CONSTR	LL UCTION	WELL CONSTRUCTION DETAILS	
						-0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Flushmount manhole	
-			Asphalt & gravel base.			_		۹ 🚺	completion and	
-			Yellowish red 5YR 5/6, Clayey SILT, little fin	e to coarse		_			concrete pad	
-			Sand, little fine to coarse Gravel. Moist.						Locking compression cap	
-2					===	-2			#1 Sand pack (1.0'-	
-									2.5')	
-						-				
						4		r I		
-4						4			8" HSA borehole (0-	
								И	60)	
_			Reddish yellow 10YR 6/6, SILT & CLAY, litt	le fine to	IIIII	_				
-6			coarse Sand, little fine to coarse Gravel. Moist	t.		-6		r J		
					= = = =	_		K		
_						_		И		
_	20/20					-		И	2" PVC riser, (0'- 41')	
-8	3.8/5.0	S1/1 to S10/1			 	-8				
-			Reddish yellow 7.5YR 6/8, SILT & CLAY, so	me fine to	===	-		r j		
-			medium Sand, trace fine Gravel. Moist.					<u> </u>		
-						-		И		
- 10						- 10			Portland/benseal grout	
-									(2.5'-36')	
-			/		===	_				
-			Yellowish red 5YR 5/6, Clayey SILT, some fin	ne to coarse	==:			<u> </u>		
-12			Sand, fittle fille to coarse Graver. Moist.			-12		И		
-	5.0/5.0	S1/2 to	Red 2.5YR 5/8, fine to coarse subrounded quan	rtzite		1-				
-		S12/2	Moist.	x Clay.	\square^{\vee}	1-				
1			Ped 2 5VP 5/6 SILT & CLAV and fine to con	ree Sand little		-		r I		
- 14			fine subangular to subrounded quartzite GRAV	EL. Moist.		- 14		Υ		
-						-		И		
-					<u> </u>	_				
- 16						16				
						- 10		r I		
								M		
L						L		И		
- 18	5.0/5.0	S1/3 to S12/3	Reddish yellow 5YR 6/6, Clayey SILT, some f	fine Sand.	<u> </u>	- 18				
-		512/5	Moist.					r J		
F			Yellowish red 5YR 4/6, Clayey SILT, some fin Sand, little fine Gravel. Moist.	ne to coarse				K		

GEOLOGIC LOG: MW-167

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20							o" HCA hawkala (0
			Red 10R 4/6, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.				60')
- 22			Reddish yellow 5YR 6/8, CLAY & SILT, trace fine Sand. Moist.	H H H H			
- 24	5.0/5.0	S1/4 to S12/4	Red 2.5YR 5/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.		- 		
-			Yellowish red 5YR 5/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist.				2" PVC riser, (0'- 41')
- 26			Red 10R 5/8, SILT & CLAY, little fine Sand. Moist.				
-28	5.0/5.0	\$1/5 to \$12/5			- 		
- 30							Portland/benseal grout
							(2.5-36)
-	5.0/5.0	S1/6 to S12/6					
- 34					— 34 —		
- 36					- 36		
- 38	5.0/5.0	S1/7 to S12/7	Red 2.5YR 5/8, SILT & CLAY, little fine to medium Sand. Moist.				Bentonite chip annular seal (36'-39')
-					- - -		
- 40 -							#1 Sand pack (39'-52')
42	5.0/5.0	S1/8 to	Red 2.5YR 5/8, SILT & CLAY, little fine to coarse Sand, little fine to coarse subrounded to rounded Gravel. Moist.		- 42 		2" PVC 10-slot screen, (41'-51')

GEOLOGIC LOG: MW-167

PROJECT: Harley Davidson

Page 3 of 3

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- - 44 -		S12/8	Brownish yellow 10YR 6/6, CLAY & SILT, little fine to coarse Sand, little fine to coarse Gravel. Moist.		- - 		2" PVC 10-slot screen, (41'-51')
- - 46			Reddish yellow 7.5YR 6/6, CLAY & SILT, trace fine to coarse Sand, trace fine Gravel. Moist.		- 		
	5.0/5.0	S1/9 to S12/9	Sand, little fine to coarse Gravel. Moist.		- 48		#1 Sand pack (39'-52')
- 50			Red 5YR 5/6, SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist.		-		
-			Light yellowish brown 2.5Y 6/4, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist. Gravelly seam 52.5'-52.8'.				
- 52 -	4.3/4.0	S1/10 to S10/10					8" HSA borehole (0- 60')
- 54							
- 56 -	4.7/4.0	S1/11 to S10/11			- 56		seal (52'-60')
- 58 -			Dark yellowish brown 10YR 4/4, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Wet.		- 58 -		
60	4.0/2.0	N/A			60		

GEOLOGIC LOG: MW-168

PROJECT INFORMATION				DRILLING INFORMATION					
PROJEC	DRILLING CO.: Eichelbergers, Inc.								
SITE LO	DRILLER: Shane Albert								
JOB NO.	RIG TYPE: Geoprobe 7822DT								
LOGGEI	OBY:	R. Ulrich		DEVELOPMENT DATE: 1/7/15, 1/15/15-1/16/15					
DATES	DRILLED:	12/2/14-12	2/3/14, 12/11/14	LOCATION:		N_{i}	orthwest Can	terbury La	ne
NOTES	• Vacuum	excavation	to 5' 3" dia dual-tube direct push macrocore	SURFACE EL	EVAT	ION 39	96.05' AMSL		
	advanced	l to 57'. 4 1	/4 ID HSA overdrilled to 57'.	EASTING		22	259872.680		
	2" PVC 1	nonitoring	well installed 12/11/14-12/12/14.	NORTHING		23	38861.827	1	
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WEI CONSTRU	LL UCTION	WELL CONSTRUCTION DETAILS
						-0		~~	Flushmount manhole
-			Asphalt road & gravel base			-			completion and
-2			Reddish yellow 5YR 6/6, SILT & CLAY, little Sand, little fine to coarse Gravel. Moist.	e fine to coarse					Locking compression cap #1 Sand pack (1.0'- 2.0')
-4						- 4 			8" HSA borehole (0- 57')
-			No Recovery			_			
-6						-6			
-	3.2/5.0	S1/1 to	Brownish yellow 10YR 6/8, fine to coarse sub- quartzite GRAVEL, little fine to coarse Sand, I Silt. Moist.	angular little Clayey					2" PVC riser, (0'-31')
-8		S 8/1	Light brown 7.5 YR 6/4, CLAY & SILT, little medium Sand. Moist.	fine to					
- 10			Reddish yellow 7.5YR 6/8, fine to coarse suba subrounded quartzite GRAVEL, little fine to co little Clayey Silt. Moist.	ngular to oarse Sand,					Portland/benseal grout
-			Reddish yellow 7.5YR 6/6, Clayey SILT, little Sand, little fine to coarse Gravel. Moist.	fine to coarse		- - -			(2.0'-25.4')
- 12			Reddish yellow 7.5YR 6/6, SILT & CLAY, lit coarse Sand, little fine to coarse Gravel. Moist	tle fine to t.					
	5.0/5.0	S1/2 to S12/2	Reddish yellow 7.5YR 6/6, SILT & CLAY, so coarse Gravel, little fine to coarse Sand. Moist	me fine to t.		- -			
- 14			Reddish yellow 10YR 6/8, CLAY & SILT, litt Moist.	le fine Sand.		14 			
- 16			Yellowish brown 10YR 6/4, SILT & CLAY, li coarse Sand, trace fine Gravel. Moist.	ttle fine to		- 			
- 18	5.0/5.0	S1/3 to S12/3				- 18			
-			Yellow 10YR 7/6, fine to coarse GRAVEL, so coarse Sand, little Silt & Clay. Moist.	me fine to	0000				
GEOLOGIC LOG: MW-168

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20			Yellow 10YR 7/6, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Moist.				2" PVC riser, (0'-31')
-			Yellow 10YR 7/6, SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist.	H H			
- 22	5.0/5.0	S1/4 to	Yellowish red 5YR 5/6, CLAY & SILT, and fine to coarse Sand, trace fine Gravel. Moist.		- 		
- - - 24		S12/4	Yellowish red 5YR 5/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist.		24		Portland/benseal grout (2.0'-25.4')
- 			Brown 5YR 5/4, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist.		- 26		Bentonite chip annular seal (25.4'-28.5')
-	5.0/5.0	\$1/5 to	Very pale brown 10YR 7/3, fine to coarse SAND, some fine to coarse Gravel, little Clayey Silt. Moist.				
- 28	5.0/5.0	S12/5	Reddish yellow 5YR 7/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, little to trace Silt & Clay. Moist.		28		#1 Sand pack (28.5'-
- 30					30		42')
- 32	5.0/5.0	S1/6 to	Very pale brown 10YR 7/4, fine to coarse SAND, and Silt & Clay, trace fine Gravel. Moist.				2" PVC 10-slot screen, (31'-41')
- 		S12/6			- - 		
- 			Reddish yellow 5YR 6/6, fine to coarse subrounded GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.				8" HSA borehole (0- 57')
- 38	5.0/5.0	S1/7 to S12/7			- - - - - - - - - - - - - - - - - - -		
			Reddish yellow 5YR 6/6, CLAY & SILT, some fine to coarse Sand, little fine to coarse subrounded GRAVEL. Moist.				
- 40 - -			Reddish yellow 7.5YR 6/8, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Dark gray laminae 40.5'-40.9'. Wet 40'-40.4', moist below.		+		
- 42	5.0/5.0	S1/8 to			- 42		Bentonite chip annular seal (42'-57')

GEOLOGIC LOG: MW-168

PROJECT: Harley Davidson

Page 3 of 3

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
		S12/8	Reddish yellow 7.5YR 6/8, SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist.	н. н. н. н. н. н. н. н. н.			
- 44			Pale yellow 2.5Y, SILT & CLAY, little fine Sand, trace fine Gravel. Moist. Dark gray laminae 44.5'-44.7', wet.		- 44		
- 46 -			Light brown 7.5YR 6/4, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Moist, except wet 46.6'-46.8'.		- 		8" HSA borehole (0- 57')
- 48	5.0/4.0	S1/9 to S10/9					
- 50			Pale brown 10YR 6/3, SILT & CLAY, little fine to coarse Sand, little fine to coarse subrounded Gravel. Moist, except Wet 49.0'-49.3' and 53.0'-53.3'.				Bentonite chip annular seal (42'-57')
- 52	5.0/4.0	S1/10 to S10/10			- 52		
- 54	5.0/4.0	61/11.4-	Pale brown 10YR 6/3, SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Moist, except Wet 54.9'-57.0'. Dark gray laminae 56.5'-56.9'.				
- 56 -	5.0/4.0	\$9/11 \$9/11			- 		

GEOLOGIC LOG: MW-169 **GROUNDWATER SCIENCES CORPORATION** Page 1 of 3 DRILLING INFORMATION PROJECT INFORMATION PROJECT: DRILLING CO .: Harley Davidson Eichelbergers, Inc. DRILLER: Shane Albert SITE LOCATION: Former York Naval Ordnance Plant, York, PA RIG TYPE: Geoprobe 7822DT 10012.26 JOB NO .: DRILLING METHOD: Geoprobe Dual-tube sampling LOGGED BY: R. Ulrich DEVELOPMENT DATE: 3/3/15 LOCATION: Southeast Canterbury Lane DATES DRILLED: 12/16/14, 2/23/15-2/25/15 SURFACE ELEVATION 389.87 AMSL NOTES: Vacuum excavation to 5'. 3" dia dual-tube direct push macrocore EASTING 2260197.951 advanced to 40'. 6 1/4 ID HSA overdrilled to 30'., 4 1/4 augers to 47 NORTHING 238579.721 2" PVC monitoring well installed 2/25/15. WELL WELL GRAPHIC DEPTH DEPTH CONSTRUCTION RECOVERY SAMPLE SOIL DESCRIPTION FEET CONSTRUCTION FEET DETAILS -0 0 Flushmount manhole Asphalt Road & gravel base completion and concrete pad Reddish yellow 7.5YR 6/6, fine to coarse subangular to Locking compression subrounded GRAVEL, little fine to coarse Sand, little Silt & cap 2 Clay. Moist. #1 Sand pack (1.0'-2.0') -4 10" HSA borehole (0-30') No Recovery. .6 .6 2" PVC riser, (0'-37') 2.0/5.0 S1/1 to -8 S6/1 Red 2.5 YR 5/8, fine to coarse subangular quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Wet. Reddish yellow 5YR 6/8, fine to coarse (predominantly fine) SAND, little Clayey Silt, trace fine Gravel. Moist. - 10 10 Portland/benseal grout (2.0'-31.9') Reddish yellow 5YR 6/6, SILT & CLAY, and fine to coarse Sand, trace fine Gravel. Moist. ----·12 12 3.2/5.0 S1/2 to S8/2 No Recovery. 14 14 Reddish yellow 5YR 6/8, fine SAND, some Clayey Silt. Moist. - 16 16 Reddish yellow 5YR 6/8, SILT & CLAY, some fine Sand. Moist. Reddish yellow 5YR 6/8, SILT & CLAY, some fine Sand. 4.9/5.0 S1/3 to Seam of fine to coarse Sand, little Silt 18.3-18.5. Moist. - 18 S12/3 18

GEOLOGIC LOG: MW-169

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 20			Reddish yellow 5YR 6/8, fine SAND, little Clayey Silt.		20		10" HSA borehole (0- 30')
- 22							
-	4.8/5.0	S1/4 to S12/4	Light yellowish brown 10YR 6/4, SILT & CLAY, little fine Sand. Moist.	HIH	-		
			Light yellowish brown 10YR 6/4, Clayey SILT, little fine Sand. Moist.		- 24		2" PVC riser (0'-37')
-			Light yellowish brown 10YR 6/4, SILT & CLAY, trace fine Sand. Moist.				
- 26 -					- 26		
- 28	5.0/5.0	S1/5 to S12/5	Light yellowish brown 10YR 6/4, SILT & CLAY, little fine Sand. Moist.		- 28		Portland/benseal grout
-			Yellow 10YR 7/6, SILT & CLAY, and fine to coarse Sand, little fine Gravel. Moist.		- - 		(2.0'-31.9')
- 30			Reddish yellow 7.5 YR 6/8, SILT & CLAY, little fine Sand. Moist.				
-			Reddish yellow 7.5YR 6/8, Clayey SILT, little fine Sand. Wet. Coarse Gravel at 31.6'.				8" HSA borehole (30'- 47')
- 32	5.0/5.0	S1/6 to			- 32		
		312/0	Reddish yellow 5YR 6/6, fine to coarse GRAVEL, some fine to coarse Sand, little Clayey Silt. Moist, except wet below 35'.		- 34		Bentonite chip annular
-							seai (31.9-35.2)
- 36 - -					- 36		
- - 38	4.8/5.0	S1/7 to S12/7			- 38		#1 Sand pack (35.2'- 47')
-			Reddish yellow 5YR 6/6, fine to coarse GRAVEL, some fine to coarse Sand, trace Silt. Wet.	0000			
- 40			Borehole deepened, soil was not sampled.		40		2" PVC 10-slot screen, (37'-47')
- 42					42		

	GROU	NDWA	TER SCIENCES CORPORATION		(GEOLOGIC LO	G: MW-169	
	PROJ	ECT: H	Iarley Davidson					
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS	
- 44 - 46	N/A	N/A			- 44 - 44 46		8" HSA borehole (30'- 47') #1 Sand pack (35.2'- 47') 2" PVC 10-slot screen, (37'-47')	

GEOLOGIC LOG: MW-170

	PRC	JECT I	INFORMATION	DRILLING INFORMATION					
PROJEC	T:	Harley Da	vidson	DRILLING CO.: Eichelbergers, Inc.					
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER:		SI C	hane Albert		
JOB NO.	:	10012.26		DRILLING METHOD: Geoprobe Dual-tube sampling					
LOGGE	OBY:	R. Ulrich		DEVELOPMENT DATE: 1/14/15, 1/16/15					
DATES	DRILLED:	12/16/14, 1	12/19/14	LOCATION: South central Canterbury Lane					
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE ELEVATION 385.96' AMSL					
	advanced	l to 40'. 4 1	1/4 ID HSA overdrilled to 40'.	EASTING		22	259962.593		
	2" PVC 1	Monitoring	Well Constructed 12/19/14.	NORTHING	-	23	38575.643	1	
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS	
\Box^0						-0		Flushmount manhole	
F			Asphait road & gravel base.			-		completion and	
-2			Reddish yellow 7.5YR 6/8, SILT & CLAY, lit coarse subangular to subrounded Gravel, little Sand. Moist.	tle fine to fine to coarse		- 2 		Locking compression cap #1 Sand pack (1.0'- 2.5')	
-4					H H H H H H H H H H	- 4 		8" HSA borehole (0- 40')	
-			No Recovery.			_			
-6						6			
-						-			
-			quartzite GRAVEL, some fine to coarse Sand,	angular trace Clayey	V	-		2" PVC riser, (0'-21.3')	
	2.6/5.0	S1/1 to	Silt. Moist.		00	-			
		50/1	Brownish yellow 10YR 6/6, SILT & CLAY, as coarse Sand, trace fine Gravel. Moist.	nd fine to					
			Brownish yellow 10YR 6/6, SILT & CLAY, so	ome fine to					
- 10			medium Sand, trace fine Gravel. Moist.			- 10		Deutlau d/hausaal ausat	
-						-		(2.5'-16.2')	
-						-			
-						-			
- 12						-12	ГИИ		
-	3.7/5.0	S1/2 to				-			
-		S10/2	Light yellowish brown 10YR 6/4, Clayey SILT	Γ, trace fine to		-			
			incurum sand. Worst.			-			
- 14									
_			Light vallowish brown 10XP 6/4 SILT & CL	AV little fine					
_			to medium Sand. Moist. Mottled reddish brow	vn and dark		_			
- 16			gray.						
F						-			
ŀ						-		Bentonite chin annular	
F	5.0/5.0	\$1/3 to				F		seal (16.2'-19.2')	
- 18		S12/3				- 18			
F						-			
ŀ			/	/	<u></u>	╞			

GEOLOGIC LOG: MW-170

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20			Light yellowish brown 10YR 6/4, SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Moist.	\ ⊥:⊥	- 20		
- - 			Reddish yellow 5YR 6/6, SILT & CLAY, little fine Sand. Moist.		- 22		#1 Sand pack (19.2'- 32.3')
-	5.0/5.0	S1/4 to S12/4	Reddish yellow 5YR 6/6, SILT & CLAY, little fine subrounded quartzite Gravel, trace fine Sand. Moist.				
- 24			Light brown 7.5YR 6/4, fine to coarse quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.		24		2" PVC 10-slot screen, (21.3'-31.3')
- 26 - -			Light brown 7.5YR 6/4, fine to coarse quartzite GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist.		- 26		
-28	5.0/5.0	S1/5 to S12/5			- 28		8" HSA borehole (0-
			Yellow 10YR 7/6, SILT & CLAY, some fine to medium Sand, trace fine Gravel. Moist.				40)
-			Pale brown 10YR 6/3, SILT & CLAY, trace fine to coarse Sand, trace fine Gravel. Wet.				
- 32 - -	5.0/5.0	S1/6 to S12/6			32 		Bentonite chip annular seal (32.3'-40')
34 			Pale brown 10YR 6/3, SILT & CLAY, little fine to coarse Gravel, trace fine to coarse Sand. Wet.		- 34 -		
- 36			Light yellowish brown 10YR 6/4, SILT & CLAY, little fine to coarse Sand, little fine to coarse quartzite Gravel. Wet.		36 		
- 38 - -	5.0/5.0	S1/7 to S8/7			- 38		
L_{40}				T : T	L ₄₀		

GEOLOGIC LOG: MW-171 **GROUNDWATER SCIENCES CORPORATION** Page 1 of 3 DRILLING INFORMATION PROJECT INFORMATION PROJECT: DRILLING CO .: Harley Davidson Eichelbergers, Inc. DRILLER: Shane Albert SITE LOCATION: Former York Naval Ordnance Plant, York, PA RIG TYPE: Geoprobe 7822DT JOB NO .: 10012.26 DRILLING METHOD: 6 1/4" ID HSA to 35', 5" Air Rotary to 45.5' LOGGED BY: R. Ulrich DEVELOPMENT DATE: 2/13/15 LOCATION: Southwest Canterbury Lane DATES DRILLED: 12/17/14, 1/16/15, 1/20/15-1/21/15 SURFACE ELEVATION 387.01' AMSL NOTES: Vacuum excavation to 5'. 3" dia dual-tube direct push macrocore EASTING 2259762.499 advanced to 34.8'. 6 1/4 ID HSA overdrilled to 35'. 5" hammer bit NORTHING 238616.679 advanced with air rotary to 45.5'. Well constructed 1/21/15-1/22/15. WELL WELL GRAPHIC DEPTH DEPTH CONSTRUCTION RECOVERY SAMPLE SOIL DESCRIPTION FEET CONSTRUCTION FEET DETAILS -0 0 Flushmount manhole Asphalt road & gravel base. completion and concrete pad Light yellowish brown 10YR 6/4, fine to coarse subangular Locking compression GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist. cap 2 .) #1 Sand pack (1.0'-2.5') -4 10" HSA borehole (0-35') No Recovery. .6 .6 2" PVC riser, (0'-32.8') 2.5/5.0S1/1 to Light yellowish brown 10YR 6/4, SILT & CLAY, trace fine **I**:I -8 S6/1 8 to coarse Sand, trace fine Gravel. Moist. Ξ т:т Brownish vellow 10YR 6/8, SILT & CLAY, some fine to medium Sand. Moist. · 10 Brownish yellow 10YR 6/6, fine to coarse subangular to 10 Portland/benseal grout subrounded quartzite GRAVEL, little fine to coarse Sand, (2'-26') little Clayey Silt. Moist. Brownish yellow 10YR 6/6, SILT & CLAY, and fine to · · · : · 12 12 coarse Sand, trace fine Gravel. Moist. 5.0/5.0 S1/2 to S12/2 14 14 - 16 16 Yellowish brown 10YR 5/6, fine to coarse subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & 5.0/5.0 S1/3 to Clay. Moist. - 18 S12/3 18

GEOLOGIC LOG: MW-171

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20			Grayish brown 10YR 5/2, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist. Mottled brownish yellow.		- 20		10" HSA borehole (0- 35')
- 22	5.0/5.0	S1/4 to	Grayish brown 10YR 5/2, fine to coarse subrounded GRAVEL, some Silt & Clay, little fine to coarse Sand. Moist.				
- 24		S12/4	Grayish brown 10YR 5/2, SILT & CLAY, little fine to medium Sand, trace fine Gravel. Moist to 22.5'. Wet 22.5'- 23.8'. Gravelly at base.	H H H	- - 24		Portland/benseal grout (2'-26')
-			Yellowish brown 10YR 5/6, fine to coarse subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.				
- 26			Yellowish brown 10YR 5/6, SILT & CLAY, trace fine to medium Sand. Moist. Mottled light & dark brown, light & dark gray, and orange,		— 26 —		Bentonite chip annular seal (26'-30.8')
-28	5.0/5.0	S1/5 to S12/5	Clayey SILT, little fine to medium Sand. Wet.		- 28		
			Light yellowish brown 10YR 6/4, fine to coarse subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.				2" PVC riser, (0'-32.8')
			Brownish yellow 10YR 6/6, CLAY & SILT. Moist.				
			GRAVEL, some fine to coarse Sand, little Silt & Clay. Wet.				
- 32	5.0/5.0	S1/6 to S12/6	Mottled as 26.5'-28.5', CLAY & SILT, trace fine Sand. Wet.				#1 Sand pack (30.8'- 43.5')
- 34					34 		2" PVC 10-slot screen, (32.8'-42.8')
- 36 -			No Recovery.		- 36 -		
- 38	No Recovery	N/A			- 		17" dia. annular opening from air lift (35'-40')
-40				 			
-			Hard to moderately hard, fresh, N5/ gray, LIMESTONE. Wet.				5" air rotary borehole (40'-45.5')
- 42					42 		

	GROU PROJ	NDWA iect: <i>e</i>	TER SCIENCES CORPORATION Iarley Davidson		(GEOLOGIC LO	G: MW-171 Page 3 of 3
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 44					- - 		5" air rotary borehole (40'-45.5') Bentonite chip annular seal (43.5'-45.5')

GEOLOGIC LOG: MW-172

	PRC	JECT I	INFORMATION	DRILLING INFORMATION					
PROJEC	T:	Harley Da	vidson	DRILLING CO	D.:	1	Eichelbergers	, Inc.	
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER: Shane Albert RIG TYPE: Geonrole 7822DT					
JOB NO	:	10012.26		RIG I I PE: Geoprobe 7822D1 DRILLING METHOD: Geoprobe Dual-tube sampling					lino
LOGGE	DBY:	R. Ulrich		DEVELOPME					
DATES	DRILLED:	11/25/14, 1	12/8/14	LOCATION: East Old Arsenal Road					
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE ELEVATION 385.48' AMSL					
	advanced	l to 40'. 4 1	1/4 ID HSA overdrilled to 40'.	EASTING		2	2260196.735		
	2" PVC 1	nonitoring	well installed 12/8/14.	NORTHING	1	2	238253.888		I
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	H WE CONSTR	ELL RUCTION	WELL CONSTRUCTION DETAILS
						-0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Flushmount manhole
F			Asphalt road & gravel base.			-			completion and
F			Cobbles & boulders.			-			Locking compression
							:::		cap
								Ζ	#1 Sand pack (1.0'-
			Brownish yellow 10YR 6/6, Clayey SILT, som	ne fine to					2.0)
-			coarse Sand, little fine to coarse Gravel. Moist	t.		Ļ			
-4						-4			8" USA borabala (0
-					<u> </u>	-		<pre>//</pre>	40')
F					\overline{O}	-		K	
-			Reddish yellow 5YR 6/8, fine to coarse subang GRAVEL, little fine to coarse Sand, little Clay	gular ev Silt.		-		И	
-6			Moist. 6.8'-7.0' seam of Silt, trace fine Sand.	, ,		6			
F					O_{1}^{\vee}	-			
-						-		r I	2" PVC riser, (0'-
F .	4.0/5.0	S1/1 to				-			27.5')
-8		S10/1				-8		И	
			Dreamish college 10VD C/C SH T little fire S	and Maint				И	
			Brownish yenow 101 K 0/0, SiL1, hule line Si	and. Worst.	===	_			
- 10			Yellowish red 5YR 5/6, fine to coarse SAND	and Silt &		- 10			D 1 1/1 1
-			Clay, trace fine to coarse subangular Gravel. N	Moist.				Y]	(2'-20.9')
F									
-			Yellowish red 5YR 5/6, Clayey SILT, little fin	e Sand.		-		И	
-12			Moist.			- 12		И	
F	4.4/5.0	S 1/2 to	Reddish yellow 5YR 6/8, SILT & CLAY, little	e fine to coarse	= : = : :	-			
F		S12/2	Sand, trace fine Gravel. Moist.		= = = =				
[_ : _ : _ :	-		Y]	
- 14					II:I	- 14			
					-::±::: _:: ±:::			И	
			Reddish yellow 5YR 6/8, SILT & CLAY, trace	e fine to	=: =:=	_			
- 16			medium Sand. Moist.			- 16			
F					 _ : : _	-			
F						F		KI -	
ŀ	5.0/5.0	\$1/3 to			<u>+</u> :_	-	ІИ	И	
- 18	5.0/5.0	S12/3	Brownish yellow 10YR 6/8, SILT & CLAY, li	ttle fine to		-18		И	
F			medium Sand. Some fine to medium Sand 18.	9-19.5. Moist.		-			
ŀ					<u> </u>	ŀ		r J	

GEOLOGIC LOG: MW-172

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 20					- 20		Portland/benseal grout (2'-20.9')
- 22	4.6/5.0	S 1/4 to S 12/4	Light yellowish brown 10YR 6/4, fine to coarse SAND, and Silt & Clay, some fine to coarse subangular quartzite Gravel. Moist.		- 22 		Bentonite chip annular seal (20.9'-23.9')
- 24 -					- 24 		2" PVC riser, (0'- 27.5')
- 26			Light yellowish brown 10YR 6/4, fine to coarse subangular quartzite GRAVEL, little fine to coarse Sand trace Silt		- 26		#1 Seed as b /22 0
- 28	4.4/5.0	S 1/5 to S 11/5	Moist. Light yellowish brown 10YR 6/4, fine to coarse SAND and Silt & Clay, some fine subangular quartzite Gravel. Moist.		- 28		#1 Sand pack (25.9 - 38.5')
- 30							2" PVC 10-slot screen, (27.5'-37.5')
- 32	5.0/5.0	S 1/6 to S 12/6	Yellow 10YR 7/6, SILT & CLAY, little fine Gravel, little fine to coarse Sand. Moist.		- 		8" HSA borehole (0-
- 34 -			Yellowish brown 10YR 5/6, SILT & CLAY, trace fine to coarse Sand. Moist.	H H H	- 34		40')
- 36			Yellowish brown 10YR 5/4, CLAY & SILT, trace fine to coarse Sand, trace fine Gravel. Wet. Yellowish brown 10YR 5/4, fine to coarse subangular Gravel, little fine to coarse Sand, little Clavey Silt. Wet.				
	5.0/5.0	S 1/7 to	Yellowish brown 10YR 5/4, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Wet.				
- 38		S 12//	Yellowish brown 10YR 5/4, Clayey SILT, little fine to coarse Sand, little fine to coarse Gravel. Wet.				Bentonite chip annular seal (38.5'-40')
<u><u></u>−40</u>	L				- 40	1 22224	I

GEOLOGIC LOG: MW-173

	PRC	JECT I	NFORMATION	DRILLING INFORMATION						
PROJEC	T:	Harley Da	vidson	DRILLING CO.: Eichelbergers, Inc.						
SITE LO	CATION:	Former Ya	ork Naval Ordnance Plant, York, PA	DRILLER:		Sh	hane Albert	DT		
JOB NO	.:	10012.26		DRILLING METHOD: Geoprobe Dual-tube sampling						
LOGGE	D BY:	R. Ulrich		DEVELOPMENT DATE: 1/9/15, 1/13/15, 1/15/15						
DATES	DRILLED:	12/1/14, 12	2/10/14	LOCATION: East central Old Arsenal Road at Canterbury Law						
NOTES	S: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE ELEVATION 382.07' AMSL						
	advanced	1 to 40'. 4 1	/4 ID HSA overdrilled to 40'.	EASTING 2259945.012						
	2" PVC 1	monitoring	well installed 12/10/14.	NORTHING		23	38249.237			
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WE CONSTR	LL UCTION	WELL CONSTRUCTION DETAILS	
			Asphalt road & gravel base.			-0		•	Flushmount manhole completion and concrete pad	
			Cobbles & gravel.			- - 2			Locking compression cap	
-			Pale brown 10YR 6/3, subangular to subround coarse GRAVEL, little fine to coarse Sand, litt Moist.	ed fine to le Clayey Silt.		-			#1 Sand pack (1.0'- 3.0')	
						- 				
-						-			8" HSA borehole (0- 40')	
			Reddish yellow 7.5 YR 6/6, fine to coarse sub- subrounded GRAVEL, little fine to coarse San	angular to d, little		-				
-6			Clayey Silt. Moist.							
-	3.3/5.0	S1/1 to				-			2" PVC riser, (0'- 21.6')	
-8		S9/1				—8 -				
-						-				
- 10			Brown 7.5 YR 5/4, SILT & CLAY and fine to trace fine subangular to subrounded Gravel. M	coarse Sand, loist.		10 			Portland/benseal grout (3'-15.5')	
-						-				
- 12	4.5/5.0	S 1/2 to				— 12 —				
-		S12/2				_				
- 14						— 14 -				
-			Reddish yellow 7.5YR 6/6, Clayey SILT, little Sand, trace fine Gravel. Moist.	fine to coarse		-				
16 			Reddish yellow 7.5YR 6/6, SILT & CLAY, tra Moist.	ace fine Sand.	H : H : H : H : H : H : H : H : H : H :	— 16 -			Bentonite chip annular seal (15.5'-18.7')	
-	4,9/5.0	\$1/3 to				-				
- 18		S12/3	Yellowish brown 10YR 5/4, SILT & CLAY, li coarse Sand, trace fine Gravel. Moist.	ttle fine to	H H H H					

GEOLOGIC LOG: MW-173

PROJECT: Harley Davidson

DE FE	EPTH EET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
ŀ					:. <u>+</u> :	}		
- 20				Yellowish brown 10YR 5/4, fine to coarse SAND, little fine to coarse Gravel, little Silt & Clay. Moist.		- 20		#1 Sand pack (18.7'- 32.8')
- 22		5.0/5.0	S 1/4 to	Brownish yellow 10YR 6/6, SILT & CLAY, little fine to medium Sand. Moist.	H H H H H H H H H H H H H H H H H H H	- 22		
-24			S 12/4	Brownish yellow 10YR 6/6, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.		- 24		2" PVC 10-slot screen, (21.6'-31.6')
-				Brownish yellow 10YR 6/6, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist.	H H H			()
- 26				Brownish yellow 10YR 6/6, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.	H H H H H	- 26		
- 28		5.0/5.0	S 1/5 to S 11/5	Brownish yellow 10YR 6/6, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist.		- 28		8" HSA borehole (0- 40')
- 30 - -				Brownish yellow 10YR 5/6, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist.		- 30		
- 32		5.0/5.0	S 1/6 to S 12/6	Light yellowish brown 10YR 6/4, fine to coarse subangular quartzite GRAVEL, little fine to coarse Sand, little Clayey Silt. Moist.		- 32		
- 34						- 34		Bentonite chip annular
- 36		5.0/5.0	S 1/7 to	Light yellowish brown 2.5Y 6/4, fine to coarse SAND, little Clayey Silt, little fine to coarse Gravel. Wet.		- 36		sedi (32.0-40)
- 38 - 40			S 12/7	Light yellowish brown 10YR 6/4, fine to coarse GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.				

GEOLOGIC LOG: MW-174

	DRILLING INFORMATION										
PROJEC	DRILLING CO.: Eichelbergers, Inc.										
SITE LO	DRILLER: Shane Albert										
JOB NO.	:	10012.26		DRILLING M	ETHOI	G D: G	eoprobe 782 eoprobe Dud	2DT ul-tube samt	bling		
LOGGEI	OBY:	R. Ulrich		DEVELOPMENT DATE: 1/13/15, 1/15/15-1/16/16							
DATES	DRILLED:	12/1/14, 12	2/15/14	LOCATION: West central Old Arsenal Road							
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE ELEVATION 379.01' AMSL							
	advanced	l to 35'. 4 1	/4 ID HSA overdrilled to 35'.	EASTING		2	259640.885				
	2" PVC 1	nonitoring	well installed 12/15/14.	NORTHING		2	38247.838				
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WE CONSTR	ELL RUCTION	WELL CONSTRUCTION DETAILS		
			Asphalt & gravel base.			0			Flushmount manhole completion and concrete pad		
-2			Cobbles & boulders.			- 2			Locking compression cap		
-			Brownish yellow 10YR 6/8, SILT & CLAY, so coarse Sand, little fine Gravel. Moist.	ome fine to		-			#1 Sand pack (1.0'- 2.0')		
-4						- —4			8" HSA borehole (0-		
-						_			35')		
6			Reddish yellow 5 YR 6/6, fine to coarse suban GRAVEL, little fine to coarse Sand, little Clay Moist.	gular quartzite ey Silt.		- 6					
-			Light yellowish brown 10YR 6/4, SILT & CL/	AY, some fine		_			2" PVC riser, (0'- 21')		
-8	4.6/5.0	S 1/1 to S 12/1	to coarse Sand, trace fine Gravel. Moist.								
-						_					
-10											
						-			Portland/benseal grout (3'-15.9')		
-			Strong brown 7.5YR 5/6, CLAY & SILT, som	e fine to		_					
- 12			coarse subangular quartzite GRAVEL, some fi Sand. Moist.	ne to coarse		12					
-	5.0/5.0	S 1/2 to				_		K			
-		S 12/2				_					
						- 14					
- 14						- 14					
-						_					
-						_					
- 16						- 16			Bentonite chip annular		
F						-			seal (15.9'-18.9')		
Ľ			Reddish yellow 7.5YR 6/8, Clayey SILT, little	fine to coarse	===			Ħ			
-18	4.7/5.0	S 1/3 to S 12/3	Sand, little fine to coarse Gravel. Moist.					₩			
		~ 1 <i>2 3</i>	Reddish yellow 7.5YR 6/8, Clayey SILT, some coarse Gravel, little fine to coarse Sand. Moist	e fine to t.		-					
1											

GEOLOGIC LOG: MW-174

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
- 20			Reddish yellow 7.5YR 6/8, fine to coarse subangular to subrounded GRAVEL, some Clayey Silt, little fine to coarse Sand. Moist.		20		#1 Sand pack (18.9'-
- 22	5.0/5.0	S 1/4 to S 12/4	Brownish yellow 10YR 6/6, CLAY & SILT, little fine to coarse Sand, trace fine Gravel. Moist.		- 22 - 22 - 24		2" PVC 10-slot screen, (21'-31')
- 26			Reddish yellow 7.5YR 6/6, SILT & CLAY, some fine to coarse Sand, little fine Gravel. Moist.		- 26		
-28	5.0/5.0	S 1/5 to S 11/5	Reddish yellow 7.5YR 6/6, SILT & CLAY, little fine to coarse Sand, trace fine to coarse subrounded quartzite Gravel. Moist.		- 28		8" HSA borehole (0- 35')
- 32			Reddish yellow 7.5YR 6/6, SILT & CLAY, little fine to coarse Sand, little fine Gravel. Wet.		- 30		
- 34	4.3/5.0	S 1/6 to S 12/6	Reddish yellow 7.5YR 6/6, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Wet.		- 34		Bentonite chip annular seal (31.8'-35')
Ę			Soil sample not recovered.				

GEOLOGIC LOG: MW-175

PROJECT INFORMATION				DRILLING INFORMATION					
PROJEC	DRILLING CO.: Eichelbergers, Inc.								
SITE LO	CATION:	Former Yo	ork Naval Ordnance Plant, York, PA	DRILLER: John Peters					
JOB NO.	:	10012.26		DRILLING M	IETHOI): Ge	eoprobe 7822 eoprobe Dua	2D1 l-tube samp	ling
LOGGEI	OBY:	R. Ulrich		DEVELOPME	ENT DA	TE: 1/	13/15-1/14/1	5	0
DATES I	DRILLED:	1/5/15, 1/7	/15	LOCATION:		W	est Old Arse	nal Road at	cul-de-sac
NOTES	: Vacuum	excavation	to 5'. 3" dia dual-tube direct push macrocore	SURFACE EL	EVAT	ON 37	76.49' AMSL		
	advanced	l to 37'. 4 1	/4 ID HSA overdrilled to 37'.	EASTING		22	259407.100		
	2" PVC 1	monitoring	well installed 1/7/15.	NORTHING		23	38248.740		
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION		GRAPHIC	DEPTH FEET	WE CONSTR	LL UCTION	WELL CONSTRUCTION DETAILS
						-0	///	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Flushmount manhole
-			Asphalt road & gravel base.			_		•	completion and
-			Gravel & cobbles.			-			Locking compression
						-			cap
								Π	#1 Sand pack (1.0'-
			Light yellowish brown 10YR 6/4, subangular f	ine to coarse		_		И	2.0)
-			GRAVEL, little fine to coarse Sand, trace Clay Moist.	ey Silt.		_		И	
-4									9" USA homeholo (0
-						_		r j	8 HSA borenoie (0- 37')
-					O_{A}	_		K)	
-			No Recovery.			-			
-6			Brownish yellow 10YR 6/6, fine to coarse sub- quartzite GRAVEL, little fine to coarse Sand, t	angular race Clayey		6		И	
L			Silt. Moist.			_		И	
-	10/50	0.1/1.	Brownish yellow 10YR 6/6, CLAY & SILT, as	nd fine to		_		И	2" PVC riser, (0'-18.8')
-8	4.2/5.0	S 1/1 to S 10/1	coarse Sand, some fine to coarse subangular qu Gravel. Moist.	artzite					
-						-			
-						-		r]	
F						-			
- 10					<u> </u>	- 10		И	Portland/benseal grout
F						-		И	(2'-12.2')
F			Very pale brown 10YR 7/3, fine to coarse suba	ngular		-			
1.2			quartzite GRAVEL, little fine to coarse Sand, l	ittle Silt &		-			
- 12			Clay. Moist.			12			
-	4.5/5.0	S 1/2 to S 12/2	Light gray 2.5Y 7/2, fine to coarse SAND, trac trace Silt. Moist.	e fine Gravel,		-			
-			Pale vellow 2 5V 7/3 fine to coarse SAND so	/ me fine to		-			
- 14			coarse Gravel, trace Silt. Moist.	/	000	- 14			Bentonite chip annular
-			Pale yellow 2.5Y 7/3, fine to coarse SAND, so	me fine		_			seal (12.2'-16.6')
-			No Recovery.	/	/				
- 16				/		- 16		Ħ	
F			Grayish brown 10YR 6/2, fine to coarse suban GRAVEL, little fine to coarse Sand, trace Clay	gular ev Silt.		-			
Ē			Moist.	-		-			#1 Sand pack (16.6'-
-18	3.9/5.0	S 1/3 to S 10/3	White quartzite cobble.						29.8)
-			White fine to coarse GRAVEL, trace fine to co	barse Sand,		_			2" PVC 10-slot screen,
ſ]		F	::洼	1∷	(18.8'-28.8')

GEOLOGIC LOG: MW-175

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20			Brownish yellow 10YR 6/6, fine to coarse SAND, some Clay & Silt, little fine Gravel. Moist.				2" PVC 10-slot screen.
-			Brownish yellow 10YR 6/6, fine to coarse SAND, some Clayey Silt, trace fine Gravel. Moist.				(18.8'-28.8')
- 22	5 0/5 0	6.1/4.	Yellow 10YR 7/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, little Clayey Silt. Moist.		- 22		
-	5.0/5.0	S 1/4 to S 12/4	Reddish yellow 7.5YR 6/6, CLAY & SILT, some fine to coarse Sand, trace fine Gravel. Moist.				
- 24			Brown 7.5YR 6/4, fine to coarse SAND, some Clay & Silt, some fine to coarse subangular to subrounded GRAVEL. Moist.		— 24 _		#1 Sand pack (16.6'- 29.8')
			Brown 7.5YR 5/4, Clayey SILT, some fine to coarse Gravel, little fine to coarse Sand, Wet. Dark gray silty seams.		-		
			Brown 7.5YR 6/4, fine to coarse GRAVEL, little fine to coarse Sand, little Clayey Silt. Moist.	н:н -:н:н			
- 28	5.0/5.0	S 1/5 to S 11/5	Brownish yellow 10YR 6/6, SILT & CLAY and fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand. Moist.		- 		8" HSA borehole (0- 37')
-			Brownish yellow 10YR 6/6, Clayey SILT, little fine to medium Sand. Wet. 1" sandy, gravelly seam at 29.7'.		-		
- 30 -			Brownish yellow 10YR 6/6, SILT & CLAY, some fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand. Moist.		30 		
- - 32 -	5.0/5.0	S 1/6 to S 10/6	Brownish yellow 10YR 6/6, fine to coarse subrounded GRAVEL, some fine to coarse Sand, little Clayey Silt. Moist to 32.3'. Wet below 32.3'.				Bentonite chip annular
- 34			Brownish yellow 10YR 6/6, fine to coarse subrounded GRAVEL and fine to coarse Sand, little Clayey Silt. Wet.		- 34		seal (29.8'-37')
-			Brownish yellow 10YR 6/6, fine to coarse subrounded GRAVEL and fine to coarse Sand, trace Clayey Silt. Wet.	00000	-		
- 36	1.9/2.0	N/A	Brownish yellow 10YR 6/6, fine to coarse subrounded GRAVEL and fine to coarse Sand, little Clayey Silt. Wet.	00000 00000	- 36		
L			Yellowish brown 10YR 5/6, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Wet.				

Appendix B

Soil Vapor Probes Construction Specifications and Logs

To: fYNOP Technical Team

From: Steve Snyder

Date: January 16, 2015

Re: Near Source Soil Gas Vapor Point Installation

The attached Figure 1 explains the dimensions and boring method for near source soil gas (NSSG) vapor point installation to be installed during the completion of Addendum 15 of the Field Sampling Plan for Part 2 of the Groundwater Remedial Investigation (GSC, April 2012). The following steps will be taken to complete the installation:

- The depth of the bottom of the boring will be established by determining the equilibrated water table in the temporary well point or final monitoring well paired with the vapor point to be installed. The depth will be determined by subtracting 5 feet plus the height of the capillary zone. The capillary zone will be determined by referring to Table 10 of the J&E Users Guide (attached), which provides a calculated height of the capillary zone based on the soil texture.
- 2. Three to five undisturbed samples will be collected from the boring. The undisturbed samples will be collected from zones based on the geologist's log and laboratory analyses from the adjacent paired well boring. Zones selected for undisturbed sampling are;
 - a. 8' below the ground surface, representing the zone below basement level in adjacent homes,
 - b. the zone representing the finest textured soils,
 - c. the zone immediately below the deepest extent of the augers, representing the capillary zone.
 - d. Depending on the depth of the boring one or two additional samples could be spaced throughout the boring to characterize materials penetrated.
- 3. The boring will be completed using 4.25" I.D. hollow stem augers to a depth to be calculated using Figure 1, such that the deeper of two NSSG vapor points is installed above the water table in an 18" glass bead pack, and the second point is installed 10 feet higher (10 feet between the top of the lower permeable pack and the upper permeable pack). The lower portion of the boring is made using the dual tube soil sampling system through the augers.
- 4. Volumes of materials (sand pack and grout zones) will be calculated, and sounded for verification.
- 5. Grout with 5% bentonite will be required because the zones to be sealed will be above the water table, and therefore are potentially subject to dehydration and cracking. Grout will be a consistency that will pour through a tremie pipe, and will

not penetrate the sand pack (six [6] gallons of water per bag of Portland cement). A small amount of choke sand and bentonite pellets could be used above the lower sand layer to prevent grout penetration. Above the top of the grout layer between the lower and upper vapor point, choke sand and bentonite pellets will also be placed. Similarly, above the top of the upper sand, choke sand and pellets will be used to prevent grout from penetrating the sand pack. Bentonite pellets will be hydrated for approximately 30 minutes prior to installing the next layer.

- 6. Care must be taken to positively identify shallow versus deep implant tubing.
- 7. The top hole will be finished with a flush-mounted driveover cover as described in Addendum 15.

TABLE 10. SOIL-DEPENDENT PROPERTIES FOR THE VAPOR INTRUSION MODEL -FIRST TIER ASSESSMENT

				Capillary Transition Zone					
U.S. Soil	Saturated						Saturated		
Conservation	Water	Residual		Water-Fille	d Porosity		Water	$\theta_{w,cap}$	Height
Service (SCS)	Content	Water	Mean or Typical				Content	Сар	Cap Zone
Soil Texture	Total Porosity	Content	(FC _{1/3bar} +θ _r)/2	Range	Conservative	Modeled	Total Porosity	@ air-entry	Fetter (94)
	θ _s (cm³/cm³)	θ, (cm³/cm³)	θ _{w.unsat} (cm³/cm³)	θ _{w.unsat} (cm³/cm³)	θ _{w.unsat} (cm³/cm³)	θ _{w.unsat} (cm³/cm³)	θ _s (cm³/cm³)		(cm)
Clay	0.459	0.098	0.215	0.098-0.33	0.098	0.215	0.459	0.412	81.5
Clay Loam	0.442	0.079	0.168	0.079-0.26	0.079	0.168	0.442	0.375	46.9
Loam	0.399	0.061	0.148	0.061-0.24	0.061	0.148	0.399	0.332	37.5
Loamy Sand	0.39	0.049	0.076	0.049-0.1	0.049	0.076	0.39	0.303	18.8
Silt	0.489	0.05	0.167	0.05-0.28	0.050	0.167	0.489	0.382	163.0
Silt Loam	0.439	0.065	0.180	0.065-0.3	0.065	0.180	0.439	0.349	68.2
Silty Clay	0.481	0.111	0.216	0.11-0.32	0.111	0.216	0.481	0.424	192.0
Silty Clay Loam	0.482	0.09	0.198	0.09-0.31	0.090	0.198	0.482	0.399	133.9
Sand	0.375	0.053	0.054	0.053-0.055	0.053	0.054	0.375	0.253	17.0
Sandy Clay	0.385	0.117	0.197	0.117-0.28	0.117	0.197	0.385	0.355	30.0
Sandy Clay Loam	0.384	0.063	0.146	0.063-0.23	0.063	0.146	0.384	0.333	25.9
Sandy Loam	0.387	0.039	0.103	0.039-0.17	0.039	0.103	0.387	0.320	25.0
Loamy Sand	0.39	0.049	0.076	0.049-0.1	0.049	0.076	0.39	0.303	18.8

Source: Environmental Quality Management, Inc., February 22, 2004, User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings, Page 37.

GEOLOGIC LOG: SV-167 **GROUNDWATER SCIENCES CORPORATION** Page 1 of 2 DRILLING INFORMATION PROJECT INFORMATION PROJECT: DRILLING CO .: Harley Davidson Eichelbergers, Inc. DRILLER: Shane Albert SITE LOCATION: Former York Naval Ordnance Plant, York, PA RIG TYPE: Geoprobe 7822DT 10012.26 JOB NO .: DRILLING METHOD: Hollow Stem Auger LOGGED BY: R. Ulrich DEVELOPMENT DATE: N/A LOCATION: 10' west of MW-167 DATES DRILLED: 3/3/15 NOTES: 4 1/4 ID HSA advanced to 31'. SURFACE ELEVATION Not Surveyed EASTING Soil descriptions are from MW-167 well log. Not Surveyed NORTHING Not Surveyed WELL WELL GRAPHIC DEPTH DEPTH CONSTRUCTION RECOVERY SAMPLE SOIL DESCRIPTION FEET CONSTRUCTION FEET DETAILS -0 0 Flushmount manhole Asphalt & gravel base. completion and concrete pad Yellowish red 5YR 5/6, Clayey SILT, little fine to coarse Swagelok fitting Sand, little fine to coarse Gravel. Moist. 2 .) #1 Sand pack (1.0'-2.5') -4 8" HSA borehole (0-31') Reddish yellow 10YR 6/6, SILT & CLAY, little fine to coarse Sand, little fine to coarse Gravel. Moist. 6 .6 : **±** : Ξ:Ξ 3/8" ID Poly tubing from surface to two SV Ξ points **I**:I -8 8 Ξ Reddish yellow 7.5YR 6/8, SILT & CLAY, some fine to medium Sand, trace fine Gravel. Moist. · 10 - 10 Portland/benseal grout (2.5'-16') Yellowish red 5YR 5/6, Clayey SILT, some fine to coarse Sand, little fine to coarse Gravel. Moist. 12 12 JAN Red 2.5YR 5/8, fine to coarse subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. 50/ Moist. Red 2.5YR 5/6, SILT & CLAY and fine to coarse Sand, little · 14 14 fine subangular to subrounded quartzite GRAVEL. Moist. Bentonite chip annular seal (16'-16.5') #00 Choke sand (16.5'-- 16 - 16 16.8') Glass beads (16.8'-18.3') Stainless steel SV point screen (17.3'-Reddish yellow 5YR 6/6, Clayey SILT, some fine Sand. 17.7') - 18 18 Moist. #00 Choke sand (18.3'-18.6') Yellowish red 5YR 4/6, Clayey SILT, some fine to coarse Bentonite chip annular Sand, little fine Gravel. Moist. seal (18.6'-20')

PROJECT: Harley Davidson

GEOLOGIC LOG: SV-167

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
-20			\			ЩЩ	Bentonite chip annular seal (18.6'-20')
-			Red 10R 4/6, SILT & CLAY, little fine to coarse Sand, trace fine Gravel. Moist.			. / /	
- 22			Reddish yellow 5YR 6/8, CLAY & SILT, trace fine Sand. Moist.	H : H H : H H : H	- 22		Portland/benseal grout (20'-27.4')
- 24			Red 2.5YR 5/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.		- 24		8" HSA borehole (0- 31')
			Yellowish red 5YR 5/6, fine to coarse subangular to subrounded quartzite GRAVEL, little fine to coarse Sand, trace Clayey Silt. Moist.				
			Red 10R 5/8, SILT & CLAY, little fine Sand. Moist.	H : H - : H : - : H : :			Bentonite chip annular seal (27.4'-27.9')
- 28					- 		#00 Choke sand (27.9'- 28.2') Glass beads (28.2'- 29.7')
- 30				H H H H H H H H H	- 		Stainless steel SV point screen (28.7'- 29.2') Collapsed formation (29.7'-31')

GEOLOGIC LOG: SV-168 **GROUNDWATER SCIENCES CORPORATION** Page 1 of 1 DRILLING INFORMATION PROJECT INFORMATION PROJECT: DRILLING CO .: Harley Davidson Eichelbergers, Inc. DRILLER: Shane Albert SITE LOCATION: Former York Naval Ordnance Plant, York, PA RIG TYPE: Geoprobe 7822DT JOB NO .: 10012.26 DRILLING METHOD: Hollow Stem Auger LOGGED BY: R. Ulrich DEVELOPMENT DATE: N/A LOCATION: 10' west of MW-168 DATES DRILLED: 2/26/15 NOTES: 4 1/4 ID HSA advanced to 16.6'. SURFACE ELEVATION Not Surveyed EASTING Soil descriptions are from MW-168 well log. Not Surveyed NORTHING Not Surveyed WELL WELL GRAPHIC DEPTH DEPTH CONSTRUCTION RECOVERY SAMPLE SOIL DESCRIPTION FEET CONSTRUCTION FEET DETAILS -0 0 Flushmount manhole Asphalt road & gravel base completion and concrete pad Ξ Reddish yellow 5YR 6/6, SILT & CLAY, little fine to coarse Swagelok fitting Sand, little fine to coarse Gravel. Moist. Ŧ 2 .) Ξ:Ξ #1 Sand pack (1.0'-Ξ: 2.5') 8" HSA borehole (0-Т 16.8') т:т -4 TIT 3/8" ID Poly tubing from surface to two SV : = : points No Recovery Portland/benseal grout 6 (2.5'-7.3').6 Brownish yellow 10YR 6/8, fine to coarse subangular Bentonite chip annular quartzite GRAVEL, little fine to coarse Sand, little Clayey seal (7.3'-7.9') Silt. Moist. #00 Choke sand (7.9'--8 8 Light brown 7.5 YR 6/4, CLAY & SILT, little fine to 8.5') : **T** medium Sand. Moist. Glass beads (8.5'-9.95') : I I : I Reddish yellow 7.5YR 6/8, fine to coarse subangular to Stainless steel SV subrounded quartzite GRAVEL, little fine to coarse Sand, point screen (9.0'-9.5') little Clayey Silt. Moist. · 10 10 #00 Choke sand (9.95'-10.2') Reddish yellow 7.5YR 6/6, Clayey SILT, little fine to coarse Bentonite chip annular Sand, little fine to coarse Gravel. Moist. seal (10.2'-10.7') Reddish yellow 7.5YR 6/6, SILT & CLAY, little fine to 12 12 coarse Sand, little fine to coarse Gravel. Moist. Ξ:Τ Portland/benseal grout _____ _____ (10.7'-14.25')Reddish yellow 7.5YR 6/6, SILT & CLAY, some fine to coarse Gravel, little fine to coarse Sand. Moist. : **エ** <u>т:т</u> Bentonite chip annular : **I** : Reddish yellow 10YR 6/8, CLAY & SILT, little fine Sand. · 14 14 seal (14.25'-14.7') Ξ:Ξ :Ξ Moist. #00 Choke sand (14.7'-15.0') \pm : \pm Glass beads (15.0'-Yellowish brown 10YR 6/4, SILT & CLAY, little fine to 16.6') Stainless steel SV coarse Sand, trace fine Gravel. Moist. Т:Т :Т - 16 16 point screen (15.5'-16.0')

GEOLOGIC LOG: SV-171

PROJECT INFORMATION				DRILLING INFORMATION						
PROJEC	T:	Harley Da	vidson	DRILLING CO.: Eichelbergers, Inc.						
SITE LOCATION: Former York Naval Ordnance Plant, York, PA				DRILLER: Shane Albert						
JOB NO.		RIG TYPE:	ETIO	Ge	coprobe 7822DT					
LOGGEI	D BY:	R. Ulrich		DRILLING M	ETHOI): H : (TE: N /	SA, Air Kotary A			
DATES		1/13/15_1/	14/15 1/23/15	LOCATION:		10	" northwest of MW-171			
DATES		1/13/13-1/.								
NOTES	to 60' B	HSA advar ackfilled w	iced to 35'. 5" air rotary	EASTING	LEVAII	ION NO	ot Surveyed ot Surveyed			
	Soil desc	riptions are	e from MW-171 well log.	NORTHING	ORTHING Not Surveyed					
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	I	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS		
			Asphalt road & gravel base.			0 _		Flushmount manhole completion and		
-			Light yellowish brown 10YR 6/4, fine to coars GRAVEL, little fine to coarse Sand, trace Clay	e subangular vey Silt.		-		concrete pad Swagelok fitting		
-2			Moist.			—2 -		#1 Sand pack (1.0'- 2.5')		
-						- 				
-4						—4 -		10" HSA borehole (0- 35')		
-			No Recovery.			-				
-6						6		3/8" ID Poly tubing		
-						-		from surface to two SV points		
-8			Light yellowish brown 10YR 6/4, SILT & CLA to coarse Sand, trace fine Gravel. Moist.	AY, trace fine				Portland/benseal grout		
-			Brownish yellow 10YR 6/8, SILT & CLAY, se medium Sand. Moist.	ome fine to		-				
- 10 -			Brownish yellow 10YR 6/6, fine to coarse sub subrounded quartzite GRAVEL, little fine to c little Clayey Silt. Moist.	angular to oarse Sand,		— 10 -				
-				1.6		-				
- 12			coarse Sand, trace fine Gravel. Moist.	nd fine to						
-						-				
- 14						- 14		Bentonite chip annular seal $(14.5'-15.0')$		
-						-		#00 Choke sand (15.0'- 15.3')		
- 16						- 16		Glass beads (15.3'- 16.8')		
-						_		Stainless steel SV point screen (15.8'- 16 3')		
-			Yellowish brown 10YR 5/6, fine to coarse sub quartzite GRAVEL, little fine to coarse Sand,	rounded little Silt &				#00 Choke sand (16.8'- 17.1')		
- 18			Clay. Moist.			— 18 _		Bentonite chip annular seal (17.1'-17.6')		
F						-		Portland/benseal grout (17.6'-26.0')		

GEOLOGIC LOG: SV-171

PROJECT: Harley Davidson

DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS
							Portland/bansaal grout
-			Grayish brown 10YR 5/2, SILT & CLAY, some fine to coarse Sand, trace fine Gravel. Moist. Mottled brownish yellow.	H : H - : H : H - : H : H			(17.6'-26.0')
- 22 			Grayish brown 10YR 5/2, fine to coarse subrounded GRAVEL, some Silt & Clay, little fine to coarse Sand. Moist.		- 22		10" HSA borehole (0- 35')
-			Grayish brown 10YR 5/2, SILT & CLAY, little fine to medium Sand, trace fine Gravel. Moist to 22.5'. Wet 22.5'-23.8'. Gravelly at base.				
24 - -			Yellowish brown 10YR 5/6, fine to coarse subrounded quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.		- 24		
- - 26			Yellowish brown 10YR 5/6, SILT & CLAY, trace fine to medium Sand. Moist.		- 26		Bentonite chip annular seal (26.0'-26.5') #00 Choke sand (26.5'-
-			Mottled light & dark brown, light & dark gray, and orange, Clayey SILT, little fine to medium Sand. Wet.				26.8') Glass beads (26.8'- 28.3') Steinlags steel SV
-28			Light yellowish brown 10YR 6/4 fine to coarse subrounded		- 28		point screen (27.3'- 27.8') #00 Choke sand (28.3'-
- - - 30			quartzite GRAVEL, little fine to coarse Sand, little Silt & Clay. Moist.		- - 30		28.6')
-			Brownish yellow 10YR 6/6, CLAY & SILT. Moist.		-		seal (28.6'-60')
-			Brownish yellow 10YR 6/6, fine to coarse subrounded GRAVEL, some fine to coarse Sand, little Silt & Clay. Wet.				
- 32			Mottled as 26.5'-28.5', CLAY & SILT, trace fine Sand. Wet.	H : H - : H : H : H	- 32 -		
- - - 34					- 		
-			Hard to moderately hard, fresh, N5/ gray, LIMESTONE.				
- 36 -			Wet.		- 36		5" Air Rorary borehole (35'-60')
-					- -		
- 38 -					- 38		
- 40					- 40		
-							
- 					- 42		

	GROU PRO.	NDWA ject: <i>e</i>	TER SCIENCES CORPORATION Iarley Davidson		GEOLOGIC LOG: SV-171 Page 3 of 3				
DEPTH FEET	RECOVERY	SAMPLE	SOIL DESCRIPTION	GRAPHIC	DEPTH FEET	WELL CONSTRUCTION	WELL CONSTRUCTION DETAILS		
- 			Hard to moderately hard, fresh, N5/ gray, LIMESTONE. Wet.		- - 		5" Air Dorory borokala		
- 46 -							(35'-60')		
- 48									
- 50							Bentonite chip annular seal (28.6'-60')		
- 52					52 				
54 -					54 				
- 56 - -					56 				
- 58 									

Appendix C

Particle Size Distribution Reports

Appendix D

Monitoring Well Development Records

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet) OT

	Developm	ent Person	nel C	is has	31 -721-1	ક	-	Pump Ty	De Min	MONSOON # 82900/BAIL
	Casing Dia	umeter	2 "	-	D	TW 58	. 96	DTB	とより	10
	Well Volu	me =	1. 4 3 gal	lons.	gal/ft*	x (DTB	- DTW)			2 gal /
	57.0				1			MS/cm	(x10	gal
Date	Time	WL (ft)	Flow Rate	Temp	pH	∆pH (units)	Cond.	∆Cond. (%)	Total Volume	Remarks & Clarity
2/12/15	132¢	øt.t9	See	in ligh	thy s	vraine	well			
	1323			STAR	r Pu	r /	VERY	MUDDY	THICK	WITH FINES.
	1330	59.17	0.35	0.5Ø	201	1	1- \$ 3	ms/cm	1.Saal.	
	1335	CANIT	ATCP	well.					3. popals	
	1345	60.60	Ф. 2 Ф	Presv	R C	VRGE				Flow rate floxuateds
	1350	the can	ITRACD	wert	SECON	D TIM	, ,			DUE TO THICK SED.
		1	7	9.73	7.22	١	ø.797	1	el Sqals	
	١٩٥٩	\$09.90	Pura	SHK 5	arted	again	(0 70	· 20ap	<u> </u>	
	8 dhh)		\$2,6	Canito	sted	312 +:,	2.		6.Sgal	\$
		Will	Return	07	a 1319	C5L .				
2/13/15	1200	Start	bailing	well.	-					
	1215	63.32	1	MM	NN	1	2× ×		9.5	W FILLES
*gal/ft: 1" = (0.041; 1.5" =	0.092; 2"	ENP P = 0.163; 3	EVELOP E	, 4" = 0.65	c.s.c	7; 8" = 2.0	51 6 6 6 6	FIRM.	3. Ogallons Builed.
									-	

Well Development Field Data Sheet

Well

MW- 161

Site

HARLEY

- DAVIDSON YORK, PA

per la

l/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ $_{\rm gal}$ gal/ft (h = 1; d = diameter in feet) OI

al/ft: $1^{n} = 0.041$; $1.5^{n} = 0.092$; $2^{n} = 0.163$; $3^{n} = 0.367$; $4^{n} = 0.65$; $6^{n} = 1.47$; $8^{n} = 2.61$

						æ		2/20/15	Date					
						1145	1120	1100	Time		Well Volu	Casing Di	Developm	Well _^\
						63,85	63.52	CAN 1T	(R) WL		me =	ameter	ent Person	N- 161
					SND	5		GRITE	Flow Rate		0.84	2 1	nel	
					32136	89		ump	Temp				7	
					ofent	.50		to Pu	pК		gal/ft*	D		S
					2 1		256	it up	apH (units)		x (DTB	TW 6		ite HAR
								63 61	Cond.		- DTW)	3152	-	184.5
									ACond. (%)	Ň		DTB	Pump Ty	NUNDS
						5.0			Total Volume	x3 x10	A A A A A A A A A A A A A A A A A A A	60	pe seles	X Div
				TURBID.	FOF FINES & URRY	NO CHANGE STILL LOTS	BAILER		Remarks & Clarity	$= \frac{2.68}{\text{gal}} \text{gal}$	Z gal C S L	.40	CAR BAILSA	ACK PA

 \mathcal{G}_{i}

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet) OF

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

Well MW-ICZ Site HARLAY Drug + Development Persons / Person / Pe				2 13/14							2/12/15	Date	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1155	φ), 11		:453	۱۹S¢	+2h1	1432	143	ιμ3φ	Time	Well Developm Casing Di Well Volu
nel csc. Site there is consistent there is a state of the service		N.N.	54.68	51.52	w. [1	cavita	52.5Ø	00 bamb		START	Beegin	(ft)	<u>Mw-</u> 167 ent Person ameter ume =
Site BARLEY DAY USSON YORK Pump Type $M_1 M_1 Manygoon # 829000000000000000000000000000000000000$		3130 0	1	Begi	でたっ	ited	Pure	40 4	Ø.79	FURDE	n Deve	Flow Rate	nel <u>cs</u> 2" 1. 35 ga
Site Itherican Dry USSON YORK Pump Type $M i NI MONSON YORK DTW 47.05 DTB 55.30DTW 47.05$ DTB $55.30BTB 55.30BTB 55.30BTB 55.30BTB 55.30BTB DTWgal 455hap H (units) Cond. aCond. Total Nemarks & Clarity Normal Network Normal Remarks & Clarity Normal Network Normal Remarks & Clarity N = gal 4551.000 Nolume Remarks & ClarityN = gal 4551.000$ Nolume Remarks & Clarity 1.000 Nolume Remarks & Cla		LOPEM	45:4	n Bail	n all	No c	E Aga	9.99	9.63	୭ ୧	lopence	Temp	
te HARLEY DAV NOSON YORK Pump Type MINI NONSON # 8290 VOTB - DTW DTB S5.30 x (DTB - DTW) $x^3 = gal c^{3/2}$ apH Cond. ACond. Total (units) Cond. ACond. Total (units) Cond. ACond. Total (units) $Cond.$ (e_{0}) Volume Remarks & Clarity (e_{0}) Volume Remarks & Clarity (e_{0}) Volume Remarks & Clarity (e_{0}) (e_{0}) $Volume$ Remarks & Clarity $Uotal Remarks & Clarity (e_{0}) (e_{0})$		ENT.	04.F	ing we	3/15.	lange	n unti	7.33	5h't	790m	nt by	pH	gal/ft*
ARLAY OAV NOSON YORK Pump Type $MINI$ $MONSON$ # 82900 -DTW $SS.30$ gal $sscons # 82900 -DTW SS.30 gal sscons # 82900 -DTW SS.30 gal sscons # 82900 ACond. Total Remarks & Clarity gal sscons Nond. (06) Volume Remarks & Clarity sscons Q.455 - 1.009als Turesion scons scons scons Q.455 - 1.009als Turesion scons scons $,	10 -	1	<i>u</i> .	151	n clari	li can.	1			lighte	ApH (units)	te TW x (DTB
Pump Type MINI NONSCON # 82900 DTB 55.30 DTB 55.30 aCond. Total (%) Volume Remarks & Clarity (%) Volume Remarks & Clarity (%) S.Opals Tores VERY Fine 5.Opals Tores O VERY Fine 4.009als Storpes Cor REC. 4.009als Storpes Cor Rec. 5.009als Storpes Cor Rec. 5.0000 Storpes Cor Rec.		55.30	Q.326			3	tation	ø.343	Q.455		y sore	Cond.	- DTW)
P. Paallons 399/5. Remarks & Clarity Volume 1.0999/5 Tures 10 VERY FINE 1.0999/5 Tures 10 Tures							•				· 25.	ACond. (%)	Pump Typ DTB DTB
YORK YORK Ball 194 Ball 194 Remarks & Clarity Remarks & Clarity JUGHT COLORED . UGHT HUTBIA. BACUM HIL Suspended Fines			9.pgall	*	*	6.070		S.Ogals	1.0999		1	Total Volume	x 10
		All Suspended Fines	ms 3gals. Railed.			's.		STOPPED FOR RECOVERY	TURBID VERY FINE FIN			Remarks & Clarity	York 30 30 gal 454

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet) Of

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

									2/12/15	Date					
				end a	1545	1540	1535	1525	1520	Time		Well Volu	Casing Di	Developm	Well
				EULLOP	35.41	55.4Ø	35.4Ø	35.02	35.00	(ft)		me =	ameter	ent Person	Mw-16
				ement	1.97	۲۹۰۱	1.975pm	1 Topin	1. 7-00-01	Flow Rate		3.74	2"	nel cs c	Ŵ
				CSL-	9.59		10.9	8.21		Temp					
					5.95		6.23	6.25		pН		gal/ft*	D		S
				TD=	1		1	1		∆pH (units)		x (DTE	TW 31		te 4
,				57.42	ø.418	Z	\$94.9	p.476		Cond.		3 - DTW)	1.33		tricy
						7)	1		ACond. (%)	ms/cm		DTB	Pump Ty	DAVIOS
			-		4 0. 0	3p.Q	20.0	(Ø.Ø		Total Volume	x3		57.4	pe, MIN	on yo
					Post surge:	value yets much lighter	stanted truck to increase	TURBIO.		Remarks & Clarity	gal sr	gal	2	1 Marson # 82900	ex, pa

Revised 8/25/95

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.002; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

				-0	52.5	ame @	the s	emained	TOR		
	Less Fines in Sport jar.		Ser	2/13/	AGAIN	PUREC	そうて	1×4	D For	1155 EN	5/12/15
2	Slight improvement to the	20.0		5.73		5.53	7.81	1.5	99.40	1153	•
		15.0		00.5		6.32	8 .78	1.5	46.70	thirthe	
	Resume PORGE	-			i	n pure	8-5	1.65	36.85	ווער	
	LIGHTLY BEGIN SURGING.								37.900	ામલ	
									39.16	1139	-
	STOP PURGE FOR RECOVERY	10.0		5.87	1	6.lØ	6.83	1.Qaba	45.00	\$211	H
							purge.	Bearin	39.92	1115	2/12/15
URGC.	Stop purse for recovery & s	5.0		6.07	1	204	8.82	1. Qapm	42.3Ø	11.05	2)12/15
	FOR MORE DETIREL REG.				ENT	-ope m	DEVE	RT	STR	1100	2/12/15
	Remarks & Clarity	Total Volume	ACond. (%)	Cond.	∆pH (units)	pЕ	Temp	Flow Rate	WL (ft)	Time	Date
	⇒ gal	x10						(GAW)			
	=gal			-DTW)	x (1971B)	gal/ft*	[-	2.59 90	me =	Well Volu	
	50	52.	DTB	62	TW 36.	D	-	2"	umeter	Casing Dia	
	Monsoon # 82900	pe MINI	Pump Tyj	-		eflero.	4 61772	nel Ch56	ent Person	Developme	
		Z	AV 1 230	et en b	ite #	Si		64	MW- L	Well	

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet)g *****gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

 	-																
			×			1 engel mera .	τ. αι <u>η τη π</u>			2/20/14	Date						
			1320	4 351	1305	1257	1255		1226	14/14	Time		Well Volu	Casing Di	Developm	Well	
	Ju 141	127	26.42	10	53.22	Bedic		STEP		\$5.54	(R)		me =	ameter	ent Personi	MW-16	
	5 0	NROE	4.20	D.24	9:20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø.35	207200	0.35	STAL	Flow Rate	MC	4.81	N	nel (5	2	
	5	しいてい	9.30	54,260	9.30	light	Benjin	d Li	16.19	27 202	Temp				7		
	erm E		1.51	AS P	55't	the state	or alla	GHTUI	7.32	39.	рĦ		gal/ft*	D		Si	
	VACOA.	r chi		si church	5	ter	elogi	50126			apH (units)		x (DTE	TW 43		te HD	
	S WEL	147 8	4.712	pump	0.712	Eminy	n Irid	E 44	0.763		Cond.		- DTW)	S Ø		YOR	
		40 F	1	INC.		202 3	proble	1 som			∆Cond. (%)	MSjem		DTB	Pump Ty	K PA	
		12 12	7. Ggalle		Sidia	teady	ins in	5° 1	2. Sault		Total Volume	x3 x10		72.9	pe		
		20 4 STR.	ins sherry	VERY FINE	llens LIGHT	pumping	Pinno DA		0.15 JULISI		Remarks &	$= \frac{14.42}{\text{gal}}$	gal	00			
		20057	LICHTER TUR	SUSPENDED	T BROWN TOU		RK BIROWN		DEIGHTBR		& Clarity		021				
			BIDITY	sediment,	81D				our.								

Well Development Field Data Sheet

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: $1^{"} = 0.041$; $1.5^{"} = 0.092$; $2^{"} = 0.163$; $3^{"} = 0.367$; $4^{"} = 0.65$; $6^{"} = 1.47$; $8^{"} = 2.61$

								-	F		-		
ld lis	19115	19/15	14/15	9/15	915	19/15	9/15	5114	71/5	21141	51/4/	Date	
	15:05	00:51	12:45	12:30	12:18	12:15	00:21	11:20	10:52	10:39	10:32	Time	
	after P	DRY	pry	DRY	caritule	SJ-HI	-29.th	49.00	49,20	Cartook	46.25	WL (ft)	
	Ind dury	1111	er te	abov-to							2400nL/	Flow Rate	
	He 50	111	1 1 1	out pur							12.30°C	Temp	a
	219			C							5.56	pН	
											9	∆pH (units)	
											0.354	Cond.	
												∆Cond. (%)	
												Total Volume	x3 = x10 =
					116 7-5.0	Finish sud the rectanget	Singevell	49.00 pering	49.20 Record	well castated	~ 0.634 gp/m:n/7500 NTU	Remarks & Clarity	$= \frac{2.405}{8.0 96} \text{ gal}$
											0.02. 5.2 m 12		

A Mension and 1/1000

Development Personnel

KGT

Will Lingston

Site ____

Horley - Dandson

Well Volume = Casing Diameter

63

gal/ft* x (DTB - DTW)

4.92

 $\|$

G

603

gal

2.405

DTW 46.18

DTB 5). 10

Well

MN-166

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)0ŗ

*gal/ft: $1^{"} = 0.041$; $1.5^{"} = 0.092$; $2^{"} = 0.163$; $3^{"} = 0.367$; $4^{"} = 0.65$; $6^{"} = 1.47$; $8^{"} = 2.61$

		-	-	-	Contraction of the local division of the loc		_	_		_	-		1
rid 15	1/9/15	19115	1/4/15	1/9/15	1 9 15	1/9/15	Malis	511611	11715	211-11-	51/4/1	Date	
	13:05	00:51	12:45	12:30	12:18	12:15	00:21	11:20	10:52	10:39	10:32	Time	
	after P.	DRY	pring	DRY	caritult	SJ-HI	47.65	49.00	49.20	Cartola	46.25	(ft)	
	120 cm	1111	er la	abov-to							2400mL/	Flow Rate	
	He & 50		(1 71	out pur							12.30°C	Temp	
	95			S							5.56	рН	
												ApH (units)	
											0.354	Cond.	
-				r								ACond. (%)	
												Total Volume	x10 =
					116 7-5.0	Fin. S. & Supp in / set puppt	Singevell	49.00 pering	49.20 Record	well cartaited	~ 0.634 gp/m:n/7500 wtu	Remarks & Clarity	$=$ $\frac{\langle 0 q_{b}}{\langle 0 q_{b}}$ gal.
×											0.0. 5.3 ~ 1/		

♦ Intersonation: 170m
TO ⊂ Qi ⊂
Well Development Field Data Sheet

Well

MN-166

Development Personnel

KGF

1/hile Lidreston / Pu DTW 46.18

DTB 51.10

Site Horky - Davoson

gal/ft* x (DTB - DTW)

4,92

X |

2.405

603

_ gal

Casing Diameter

Well Volume =

63

								х3	= gal
								x10	gal
Time	(ft)	Flow Rate	Temp	РĦ	∆pH (units)	Cond.	ACond. (%)	Total Volume	Remarks & Clarity
1330	33.65								& notenauch water
(tode JUN Futer
									asked JSR to move on
									tonexthration
.041; 1.5" =	0.092; 2" =	= 0.163; 3	" = 0.367;	4" = 0.65	; 6" = 1.4	7; 8" = 2.6	51		
on: (1/4d ² 7	th) x 7.48(=	gal/f	t (h = 1; d	or = diamete	er in feet)			Revised 8/25/95
	Time 1330 1350	Time WL (ft) (ft) 1330 33.65 1330 33.65 1330 33.65 1330 33.65 1330 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 33.65 1320 1400 141 ; $1.5^{m} = 0.092$; $2^{m} = 0.092$;	Time WL (ft) Flow Rate 133.65 33.65 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 13.65 1 14.15 1 15.041; 1.5" = 0.092; 2" = 0.163; 3 0n: (1/4d ² πh) x 7.4805 =	Time WL (ft) Flow Rate Temp 13.65 33.65 33.65 13.65 13.65 13.50 33.65 33.65 13.65 13.65 13.57 33.65 13.65 13.65 13.65 13.57 0.092 ; $2^n = 0.163$; $3^n = 0.367$; on: $(1/4d^2\pi h) \ge 7.4805 = gal/ft 14.57 $	Time WL (ft) Flow Rate Temp pH $13,30$ $33,65$	Time WL (ft) Flow Rate Temp pH apH (units) 13.50 33.65 (units) (units) 13.65 (units) (units) (units) 14.75 (units) (units) (units) 14.74 (units) (units) (units) 14.75 (units) (units) (units) 15.75 (units) (units) (units) 16.75 <td>Time WL (ft) Flow Rate Temp pH (units) <math>apH(units) Cond. 12,320 33.65 </math></td> <td>Time WL (t) Flow Rate Temp pH apH (units) Cond. (%) Cond. (%) $13,3,6,5$ 33.6,5 </td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	Time WL (ft) Flow Rate Temp pH (units) $apH(units) Cond. 12,320 33.65 $	Time WL (t) Flow Rate Temp pH apH (units) Cond. (%) Cond. (%) $13,3,6,5$ 33.6,5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Well Development Field Data Sheet

Well

MW-166 cant.

Development Personnel

18X

Site Mire linstan

Harley-Drukson

Well Volume = Casing Diameter

gal/ft* x (DTB - DTW)

DTW 33.65

Pump Type _____ DTB _____

34.10

H

gal

Revised 8/25/95

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)or

*gal/ft: $1^{"} = 0.041$; $1.5^{"} = 0.092$; $2^{"} = 0.163$; $3^{"} = 0.367$; $4^{"} = 0.65$; $6^{"} = 1.47$; $8^{"} = 2.61$

													_				
1/4/14	11/15	19/15	1/9/15	119/15	119/15	1915	1/9/15	Ilalis	119/15	1/9/15	19/15	Date					
(03y	1035	6201	10000	0943	0933	0923	0922	0920	11P0	Dais	0900	Time		Well Vol	Casing D	Developn	Well
Casibate	46 49	46.55	46.65	46.85	47.01	Context	48.98	44.4 4	37.15	37.15	37.57	(ft)		ume =	iameter	nent Personi	MM
												Flow Rate		0165	2"	nel	-167
								11.52				Temp				KBF/A	
								6.78				рH		gal/ft*	Γ	nike lis	S
												ApH (units)		x (DTE	TW 3	Vinits ton	ite
								0.342				Cond.		3 - DTW)	7.57	,	Harley
												∆Cond. (%)		13	DTB	Pump Ty	1-Vau
							د 	~ Syal				Total Volume	x3 =	.23	50.	pe	Asen
autor v v v v	Perance, Brit Mint - English	percurit	Recordly	Perony/	Becomy	letrell Recen		105 3.61 1 TOS: 0.54	brain brimping 00	set amp of the surger of	Beginsuaint	Remarks & Clarity	$= \frac{10.46}{9} \text{ gal}$ = 20.456 gal 2 56 4	$= \frac{2 \cdot S }{\sqrt{2}}$ gal	08		
	1020	3															

Well Development Field Data Sheet

Harley - Dauldson

MW-167

1 8/25/95	Revisea	
	1 8/25/95	

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet)Or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

				1/9/15	1 9115	1/9/15	Date					
				11.56	11:55	11:54	Time		Well Volu			Developm
				Cavitated	Omia	48,85	WL (ft)			uneter		ent Personi
							Flow Rate				-	nel
							Temp					
							рĦ		gal/tt+		ŗ	
							∆pH (units)		ята) х	W	TYX	
							Cond.		(אומ-:			
							ACond. (%)	1		ם וע	מדת	Pump Typ
							Total Volume	x10	5			č
	1			turb -5.0	April Demportant The	Acaely	Remarks & Clarity	gal	gal			

Well Development Field Data Sheet

Well _

NN-167 cont.

Site

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)q

*gal/ft: $1^{"} = 0.041$; $1.5^{"} = 0.092$; $2^{"} = 0.163$; $3^{"} = 0.367$; $4^{"} = 0.65$; $6^{"} = 1.47$; $8^{"} = 2.61$

		T	<u> </u>	1		1			1		1	11	٦				
1/4/14	1/15	19115	19115	1915	119/15	11915	19/15	Glis	1/9/15	19/15	19/15	Date					
850)	1035	6201	00000	0943	0933	0923	0922	0920	6917	0915	0900	Time		Well Vol	Casing D	Developn	Well
Casifat	46.49	46.55	46.65	46.85	47.01	Carter	48.98	44.44	37.15	37.15	37.57	(ft)		ume =	iameter	nent Personi	MM
												Flow Rate		0165	21	nel	-16 +
								11.52				Temp				KBF/ N	
								6.78				pН		gal/ft*	a	nite lix	S
												apH (units)		x (DTH	TW 2	Juniston	ite
								0.340				Cond.		3 - DTW)	7.57.		Harley
												ACond. (%)		13	DTB	Pump Ty	- Van
							c	~ Syal				Total Volume	x3 x10	.2.3	50.	pe	Ason
autation of the	Recurry, Basih Noter a Guarty	proven	Recordy	Peroviny /	Perony	letul Percar		po: 3.61 1 0 TOS: 0.34	brain prmpiny 00	set amp of the sum of	Begnsuaint	Remarks & Clarity	= 10.46 gal = 20.456 gal 21.56 y	$= \frac{2 \cdot 156}{7 \cdot 16}$ gal	08		
	10750	25					æ										

Well Development Field Data Sheet

Harley - Vaudson

MW-167

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

	11 - <i>1</i> 11	N	< L9	∮ } ₽	<u>e</u>	•				
	Developmo	ent Personr	le					Pump Tyj	č	
	Casing Dia	umeter			a	TW		_ DTB		
	Well Volu	me =			gal/ft*	x (DTB	- DTW)			= gal
									x3 =	gal
Date	Time	WL (ft)	Flow Rate	Temp	pH	ApH (units)	Cond.	∆Cond. (%)	Total Volume	Remarks & Clarity
1/9/15	11:SY	48,85								Quary
1915	11:55	Omino								Dar Downson / June
1/9/15	11:56	Cavitate								trb-5.0
- - - -										
gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet)or

 $\overline{}$

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

-						_				_		_	_
	Date	117115	ーエア	1 7 15	117115	171155	1/7/15	117115	1/7/15	1/7/15	117115	NITIS	
	Time	12:00	12:16	12:14	12:24	12:38	12:55	12:58	13:15	05:51	13:45	13:46	13.49
	(ft)	22.30	22.35	33.50	3939	35.25	33.30	34.02	37.05	37.05	36.40	36.38	m sele
	Flow Rate			~.85ypm	11			=					
	Temp			12.34				13.05					515
	pÆ			6.79				6.83	7				5:72
	∆pH (units)												
	Cond.			0.302				6.3)6					0100
	ACond. (%)												
01X	Total Volume				~18 qul	¢		~5191	e				23
= <u>12.558</u> gal	Remarks & Clarity		Stavi purinit	10 546mile DRP 292	vell contrarted	Po (out vy	Plony	Caultate 2 e 13:03	Recourt	Record	Recary	primp	two: -5 (looks us by clearer

SOTW MINIMUS

Weu Development Personnel

1 5 M

My LANGON

DTW 22.35

Site

Harry Dr. Eson

Pump Type wholes DTB 4045 18.15

Well

MW-168

Well Volume = Casing Diameter

0.163

gal/ft*

x (DTB - DTW)

x3 = ||

8.875

- gal

2.2458 gal

Well Development Field Data Sheet

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ _ gal/ft (h = 1; d = diameter in feet) 0ŗ

*gal/ft: $1^{"} = 0.041$; $1.5^{"} = 0.092$; $2^{"} = 0.163$; $3^{"} = 0.367$; $4^{"} = 0.65$; $6^{"} = 1.47$; $8^{"} = 2.61$

	Well		-		S	ite				
	Developm	ient Person	nel					Pump Ty	pe	
	Casing Di	ameter			٦)TW		DTB		1
	Well Volu	ıme =			gal/ft*	x (DTH	3 - DTW)			11
									x3 x10	11 11
Date	Time	W⊥ (ft)	Flow Rate	Temp	Ηq	арН (units)	Cond.	∆Cond. (%)	Total Volume	
1/1/19	14:27	35.85								
117115	14:30	canter								
511/1	00 5 1	35.10								
17115	1545	34.95								
										1
							·			

168 continued.

Well Development Field Data Sheet

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

Date	117115	1775	1 7 115-	117115	17115	2114115	1 7115	1/7/15	1/7/15	7111	1715	2112
Time	12:00	12:16	12:14	12:24	12:38	12:55	12:58	13.15	13:30	13:45	13:4%	13.49
(ft)	22.30	22.35	33.50	39.29	35.35	33.30	34.02	37.05	37.05	36.40	36.38	(D. junice)
Flow Rate			~.85gpm	1			1					
Temp			12.84				13.05					13.65
pĦ			6.79				6.83					5:72
∧pH (units)												
Cond.			0.302				6.316					940
ACond. (%)												
Total Volume				~18 qul			~519)	e	÷			231
Remarks & Clarity		Start proving	10:5:00 U TOS: 0.19 10:5:6:6:11 0:20:29:292	volto int d	Po (as M	friony	Caultate @ 13:03	Recovery	Reinweit	Accury	punjo	no: Kig TUS: 0.12

Well Casing Diameter Development Personnel MW-168 12= K3) Well Development Field Data Sheet MUL LAMPSIDA Site DTW 22.30 Hover Dr. Osan Pump Type Wholes DTB 4045

Well Volume =

0.163

gal/ft* x (DTB - DTW)

18.15

2. 2 95 8 gal

X. |

8,875

gal

ADTW NEW MARK

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ _ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

168 continued.

Well Development Field Data Sheet

Site

Well

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)or

ł

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

_	_												
						<				5.15	2 2 2	Date	
						04:20	14:25	14:02	13:22	13:20	01:11	Time	
							35.35				20,63	(ft)	
												Flow Rate	
								13,85		2	+2-24	Temp	
		24						100		5.82	6.8	pH	
				0		ŕ						∆pH (units)	
		- 1	-					0.209		0.28%	0.316	Cond.	
								705		11.20	105	∆Cond. (%)	
								0.14		21	0.19	Total Volume	x3 x10
		· W			pump + car itale			torb - 15, 0 has clearer	Cavi late	-S.O book NTW	-5.0 1010.	Remarks & Clarity	$= \frac{q. 46}{33.2} \text{ gal}$

Well Development Field Data Sheet

Site LYNOP- South of SPBA

Well Volume = _

0.163

gal/ft* x (DTB - DTW)

||

3,32

gal

DTW 20.63

Pump Type Walter DTB 4 20.37

Casing Diameter 2"

Development Personnel Mike Livingston

Well NW - 168

1

Revised 8/25/95	

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ $_{-}$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

							119/15	Date	
							1330	Time	Well Developm Casing Di Well Volu
							33.65	(ft)	AHAT ameterm me =
								Flow Rate	nel 169
								Temp	ust was
								pН	ell Deve
								∆pH (units)	ite Ind TW X DTE
								Cond.	Har Har 3.65 3.05
								aCond. (%)	Pump Ty DTH
								Total Volume	ret pre $rate of the set of th$
				torest bration	asked JSR tomore on	toden 10,0 Forther	& notchingh water	Remarks & Clarity	-

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet)or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

+ 100 4=												3/3/15	Date					
		1310	1305	1255	1246	1237	1235	1232	1230	1225	1222	1220	Time		Well Vol	Casing D	Developn	Well
	LIT	35.88	35. 00 00	2000.90	35.92	WATER	STOP	SURGE	35.82	35.75	pump	BEGIN	(ft)		1me =	lameter	ient Person	MW-16
	TLE T	Ø.6	0.6	С	Ø.6	CLEA	SURG	wear	Ø.6gm	9.6 m	set	6 SVEL	Flow Rate	ala	1.91 90	2"	unel S	2
	0 7 8	13.6	13.2	12.6	12.6	222	126 W		14.2	13.3	2000	126	Temp		12.		7	
R C C	F N	4.94	S. 28	5.64	00 20 2	0	pom		6.07	3,15	TTOM	verr	pE		gal/ft*	Γ		S
Deve	cs s	1		1	1	5.4	CAT		1	1	RAT		∆pH (units)		x (DTI	TW 39		ite H
ropen	ETTLI	\$ 389	Q.403	414.0	0.434	SURGE	= Q.0		ø.541	6.649	0		Cond.		3 - DTW)	5.12		ARLEY
2021	2 G O U				1	WRICH	gen])	Ø.60		ACond. (%)	n 5/cm		_ DTE	Pump Ty	- 24
30.0	1 H	30.0	25.9	20.0	15.0	2 60 34	10.0		52.5		mge		Total Volume	x3 x10		46.8	pe Typ	1 DSON
gallons	S GAL	TURB	TURB	TURB	TURB	me w/	Very				VERY		R			3	Hoon	J. YOR
evar	8000	215 -	= 465	- 928	- 986	prov	TURS.				TUEBU		emarks &	gal	gal			KPA
verted	ET	.QNT	NTU's	NTU'S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a feu	DARK				DARK		Clarity					
r tota		o's				+	SROWN				Beou							
1						5					ž							

Well Development Field Data Sheet

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2				22.14 IS
2" = 0.163; 3				
" = 0.367;		ः म		
4" = 0.65				
; 6" = 1.4 or				
7; 8" = 2.				
61				
8	¥2			Add Igal. Held + ouge + pump to cartate. 1.25 yest. aut

Well Development Field Data Sheet

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

_	 					_										
										2 13 15	Date					
				10,35	+0932	\$95¢	2200		5160	682 2	Time			Well Volu	Casing Dia	Developm
			36.68	Bailed	Pump	36.70	-04:30		36.17		WL (ft)			me = 4	ameter	ent Persom
			HARD	anoth	Start	1.29pm	Bacto		NA		Flow Rate			0 21.9	2.1	nel csc
			Berto	Ę	a va	9.45	6070				Тетр			.99		
			5 0-	5.000	PKiz	6.69	e w/				pН	e.		gal/ft*	D	
		2	42.98	(lons	G	1	Pung	1			apE (units)			x (DTB	[W 35.	
						2.21					Cond.			- DTW)	.545	-
						1					ACond. (%)				DTB	Pump Tyj
				15.0	-	10.000			S. Paals		Total Volume	x10 =	X3		41.5	be
				No change.	Erown, no course/ Just	llon Very furdid DARK		set up pump.	work of period mod ;	Begin with Sailer pump	Remarks & Clarity	gal	gal	gal	4	

Well Development Field Data Sheet

Well

It. - MW

Site

HARLEY - DAVIDSON

YORK, PA

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ _ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

Well Development Field Data Sheet

Site FYNOP-South of SPBA

Well MW-172

gal/ft calculation: $(1/4d^2\pi h) \ge 7.4805 =$ gal/ft (h = 1; d = diameter in feet)9

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

1915	21 19 1		191	119115	1 9/15	1911	119/15	7/14/15	1/19/15	1/9/15	1/9/15	Date	
	15.12	20121	14:52	Lh. H (14:45	05.115	14:17	1407	1404	OOHI	14 1373	Time	Well Volu
atot in	p-mp	27.85	28.10	cartate	26.00	26,03	26.28	26.60	cavitate	16.15	16.15	(ft)	
												Flow Rate	0.16
												Temp	
												рĦ	gal/ft*
												∆pH (units)	x (DTH
												Cond.	3 - DTW)
												ACond. (%)	+-
								4	ما ^{ما} کرر			Total Volume	. (/ x3 x10
		Reconny	Recum	Gutat	NIN O SIDNIN	Recuri	Recourd	Reconny	4 4vb -50 vtv	pump vell 0	Setwonie / TSVIA	Remarks & Clarity	$= \frac{2.379}{7.134} \text{ gal} \\= \frac{7.134}{2.374} \text{ gal} \\= \frac{2.374}{2.374} \text{ gal}$

Well Development Field Data Sheet

Well

MN-17.

Casing Diameter

2 =

Development Personnel_

V3F

/ Mille / inhaston

16.22

Pump Type _____ DTB ____

30.82

Site

Harley - Davidson

and arsenalized

gal/ft calculation: $(1/4d^2\pi h) \times 7.4805 =$ gal/ft (h = 1; d = diameter in feet)9

*gal/ft: $1^n = 0.041$; $1.5^n = 0.092$; $2^n = 0.163$; $3^n = 0.367$; $4^n = 0.65$; $6^n = 1.47$; $8^n = 2.61$

	Developm	ent Personi matar	nel $V3$	F/m	12/11/24	ston 17	22	Pump Ty	JE	2 yrs
	Well Volu	me =	0 163		بر gal/ft*	x (DTE	- DTW)		6 00	= 2.379 gal
								-	x3	$= \frac{7.134}{2.374} \text{ gal}$
Date	Time	(ft)	Flow Rate	Temp	ыd	ApH (units)	Cond.	ACond. (%)	Total Volume	Remarks & Clarity
1/9/15	A BEE	t6.15								cotionale & T.SVIAL
1/9/15	OCHI	16.15								bund ve 11
119/15	1404	calitate								the solution
14115	1407	26.60							4	Recent
119/15	14:17	26.28								Record
119115	14.30	26,03								Reconst
19/15	14:45	26.00								NUN 2.2 - DIMUN
119115	Th. H [cartate								Gutat
19115	14:52	28.10								Recam
1915	80.51	27.85								Reconny
1915	15:15	p~mp								Gara
((15	15:17	aritate								Caritate turb-Scentu

Well Development Field Data Sheet

Harley - Davidson

(dd orsenal Pd)

Well MW-173 Site Harley Development Personnel V3F/ Mike / inhostorn (6.22

"'ft calculation: $(1/4d^2\pi h) \ge 7.4805 = _$ gal/ft (h = 1; d = diameter in feet) or

*gal/ft: 1" = 0.041; 1.5" = 0.092; 2" = 0.163; 3" = 0.367; 4" = 0.65; 6" = 1.47; 8" = 2.61

	 1					_	_	_			-				
			115 15	1/13/15	1/13/15	1/13/15	1/13/15	1/13/15	1/13/15	Date					
			11.03	12:25	11:07	10:57	10:45	10:04	10:01	Time			Well Vol	Developn Casing D	ファー・コー
			28,76	28.77	2694	27.05	PI.C		17.82	(ft) WL			ume = 0	iameter	1
				Wald					Wa	Flow			291 -	a Mike	
			5.4.2	r shill la	11.96				fer loo	Temp				Livings	-
			6.43	soks hi	5.91				ks lik	pН			gal/ft*	bo / Je	
				ce ch					e chu	∆pH (units)			x (DTE	1014/ 18.	2
			0.655	colate	0.646				colate	Cond.			3 - DTW)	leese 33	
				milk					milk	∆Cond. (%)			12.	Pump Ty	
				6	*					Total Volume	x10	х3	67	pe Wa	
		æ	to unally conversion Aloren		turb: -5.0 pump 2			pumped dry Journo 5	Surge the well, then pump	Remarks & Clarity	= 21 gal	= 6.2 gal		les	
			<u>p</u>		~)			24.15							

Well Development Field Data Sheet

Site LYNOP

Well

:4w-173

Well M	461-12			<u>N</u>	te CYN	ND-S	outh of	SPAN		P.
Developm	ent Personi	nel Myke	Living	stan I I	mitu	Reex	Pump Ty	pe Wale		
Casing Dia	ameter	: Q		D	rw 2	2	DTB	31		
Well Volu	me = 0	163		gal/ft*	x (DTB	- DTW)	9.0	8	= 1.48 gal	
								x3	$=$ $\frac{4.44}{5}$ gal	
	WL	Flow	3		۲nA		AC ond	Tatal	<u> </u>	
Date Time	(ft)	Flow	Temp	pH	∆pH (units)	Cond.	∆Cond. (%)	Total Volume	Remarks & Clarity	
1 13/15 11:20	20.35	2	para	meters	med	sured	-		Swart (Rump-	
04:11 J	28,30	٤	ater	looks	like	choo	oble		a sallous pungla	
12:08	28.65		mil	Ksha						
- (m): c) the !-										
12:54	ah' 8°C								water level at top of	
113/15 13:08 4	28.46		4				¥	2.51	pump.	
								gni.		
			•							
gal/ft: 1" = 0.041; 1.5" =	0.092; 2" =	±0.163; 3"	= 0.367;	4" = 0.65	; 6" = 1.47	; 8" = 2.6	1			
al/ft calculation: $(1/4d^2\pi)$	th) x 7.480.		₽a]/A		- 11,					

(Inc

Revised 8/25/95

4				W	ell Deve	lopment	Field D	ata Shee	t	J.
4	Well M.W.	1-175			S.	te LYN	OP-S	Unit of	8PBA	
49	Developme Casing Dia	meter 2	nel Mike	Livingsta	D'/Jer	IW 2	5.81	Pump Ty DTB	pe Wal	1 La
	Well Volu	ne =(0.163		gal/ft*	x (DTE	8 - DTW)	3.0	0	= 0.50 gal
									x3 x10	$= \frac{1.51}{5.0} \text{ gal}$
Date	Time	(ft)	Flow Rate	Temp	pН	∆p∐ (units)	Cond.	∆Cond. (%)	Total Volume	Remarks & Clarity
1 13 15	13:25		No phi	ramet	N SI	easture	d' wa	tr		Surge sump 0.25
1 13 15	sh: 5		5-	oks	like	choco	late N	Jiksha	Le.	cal tata
1/13/15	13:57									nump + cantalis
1/13/15	14:35	26.48								dan -
1/13/15	5:12	59.90								
1/13/15	84131	34.55		4		Ł			4	pump - about 3 gals out
1/1-4/15	01:05	hH 50								
-	10.0									and Igallon dishilled the O
	10:37	26.73	-	A Agencieros			1			
	10:41	25.78								Add John Mad
-		24.65								
	12:26			6.53	6.81		ELS!			Turb= -5
*gal/ft: 1" = ().041; 1.5" =	0.092; 2" -	= 0.163; 3	"= 0.367;	4" = 0.6:	5; 6" = 1.4	17; 8" = 2.0	51		TOS= 0,37
gal/ft calculat	tion: $(1/4d^2)$	πh) x 7.48(05 =	gal/j	ft (h = 1; c	or 1 = diame	ter in feet)			pump and Revised 8/25/95
							×			
		£.				Pro-	1		13. 14.	Ó
		1				-	8	1	1	

9

÷,

Appendix E

Monitoring Well Sampling Purge Logs

Sampling Event: 2015 2nd Rnd SPBA New	Well Sampling	Well ID: MW-64S
Project NO: 10012		Project Location York, Pa
	Purge Information	
Purge Date: <u>4/15/2015</u>		Pump ID:
Purged By: Casey Littlefield		Water Quality Inst: Horiba W-22
Purge Technique: 3 Well Volumes		Water Quality Inst ID: 82679
Purge Method: Hand Bail		Total Purge Vol (gal) 2.75
<u>Pump Set Depth (Ft BGS) :</u>		
Total Depth of Well (Ft BGS): 42.28		
Initial Depth to Water (Ft BGS): <u>34.6</u>		
	Sample Information	
Sampled By: Kaitlin Fleming		Sampled Method: Hand Bailer
Sample Date: 4/16/2015		Unit ID: Hand bailer
Sample Time: 9:20		Duplicate ID:
Sample ID: HD-MW-64S-0/1-0		MS/MSD ID:
Notes: Recovering waterlevel on 4/16. = 40.48'		

					Pu	rge Para	ameter	Infor	<u>mation</u>			
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/15/2015	8:50	14.3	4.81	12.8	0.164	9.08	0	312				Initial
4/15/2015	9:00	14.4	5.2	211	0.086	9.24	0	302		1.25	39.28	First Well Volume
4/15/2015	9:10	13.9	5.13	-5	0.076	8.97	0	312		1.25	40.72	Second well volume

<u>Sampling</u>	Event: 2015 2nd Rnd SPBA New Well Sampling	Well ID: $MW-64D$
Project N	<u>0: 10012</u>	Project Location York, Pa
	Purge Information	
<u>Purge Dat</u>	<u>te:</u> <u>4/14/2015</u>	Pump ID: Grundfos 82184
Purged By	<u>y:</u> Casey Littlefield	Water Quality Inst: Horiba W-22
Purge Tec	chnique: Well Yield Matched Purge	Water Quality Inst ID: 82679
<u>Purge Me</u>	thod: Positive Displacement	Total Purge Vol (gal) 6.8
<u>Pump Set</u>	Depth (Ft BGS) : 72.5	
<u>Total Dep</u>	oth of Well (Ft BGS): 77	
Initial De	pth to Water (Ft BGS): 61.02	
	Sample Information	
Sampled E	By: Casey Littlefield	Sampled Method: Positive Displacement
Sample Da	ate: <u>4/14/2015</u>	Unit ID: Grundfos 82184
Sample Ti	me: <u>13:35</u>	Duplicate ID:
<u>Sample ID</u>	<u>D:</u> <u>HD-MW-64D-0/1-0</u>	MS/MSD ID:
Notes:		
	Purge Parameter Infor	mation
	Purge Parameter Infor	nauon

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/14/2015	13:10	13.6	7.74	5.6	0.311	9.77	0	108	0.34		61.11	Pink purge water.
4/14/2015	13:15	15.1	7.35	7.5	0.367	7.66	0	85	0.34	1.7	61.11	
4/14/2015	13:20	15.2	7.31	2.4	0.37	7.66	0	105	0.34	1.7	61.11	
4/14/2015	13:25	15.2	7.33	1	0.368	7.63	0	110	0.34	1.7	61.1	
4/14/2015	13:30	15.2	7.32	0.7	0.369	7.68	0	113	0.34	1.7	61.1	

	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-141A</u>
	Project NO: 10012	Project Location York, Pa
	Purge Information	
	Purge Date: 4/14/2015	Pump ID: dedicated
	Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22
	Purge Technique: Well Yield Matched Purge	Water Quality Inst ID:
	Purge Method: Positive Displacement	Total Purge Vol (gal) 420.45
	Pump Set Depth (Ft BGS): 293.85	
	Total Depth of Well (Ft BGS): <u>300</u>	
	Initial Depth to Water (Ft BGS): 47.92	
	Sample Information	
	Sampled By: Casey Littlefield	Sampled Method: Hand Bailer
	Sample Date: 4/15/2015	Unit ID: Bailer
	Sample Time: 9:32	Duplicate ID:
	Sample ID: HD-MW-141A-0/1-0	MS/MSD ID:
Notes:	Strong sulfur odor.	
	Tank total gallons at around 375 gallons.	

					Pu	rge Para	ameter	• Infor	<u>mation</u>			
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/14/2015	11:45	13.7	7.03	12.9	0.291	3.91	0	-91	10		66.1	
4/14/2015	11:50	13.8	7.63	3.2	0.285	2.83	0	-138	9.68	50	91.5	
4/14/2015	11:55	13.8	7.7	18.4	0.282	4.22	0	-143	9.38	48.4	112.8	
4/14/2015	12:00	13.8	7.73	12.8	0.283	5.55	0	-149	8.82	46.9	130.1	
4/14/2015	12:05	13.9	7.81	15.6	0.278	5.05	0	-184	8.57	44.1	151.2	
4/14/2015	12:10	14	7.85	15.6	0.271	5.72	0	-217	8.11	42.85	182.4	
4/14/2015	12:15	14.2	7.87	15.6	0.256	4.09	0	-211	7.69	40.55	209.6	
4/14/2015	12:20	14.2	7.89	22.5	0.235	5.53	0	-211	6.67	38.45	231.2	
4/14/2015	12:25	14.2	8.03	66.6	0.222	5.44	0	-208	6.52	33.35	250.1	Purge water light brown
4/14/2015	12:30	14.1	8.15	175	0.212	5	0	-95	6.25	32.6	269.9	
4/14/2015	12:35	14.3	8.3	364	0.218	5.2	0	-39	6	31.25	287.8	
4/14/2015	12:37									12		

]

		W UDD MW 161
	Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>WW-101</u>
	<u>Project NO:</u> 10012	Project Location York, Pa
	Purge Information	
	Purge Date: <u>3/17/2015</u>	Pump ID: monsoon # 82951
	Purged By: Ryan Ulrich	Water Quality Inst: Horiba W-22
	Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 82605
	Purge Method: Positive Displacement	Total Purge Vol (gal) <u>15.7</u>
	Pump Set Depth (Ft BGS) : 66	
	Total Depth of Well (Ft BGS): 67.7	
	Initial Depth to Water (Ft BGS): 58.57	
	Sample Information	
	Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
	Sample Date: <u>3/17/2015</u>	<u>Unit ID: 82951</u>
	Sample Time: 15:38	Duplicate ID:
	<u>Sample ID:</u> <u>HD-MW-161-0/1-0</u>	MS/MSD ID:
Notes:		
	Dungo Donomoton Inform	nation
	Purge Parameter Inform	11211011

					I UI	ige i an		IIIIVI	manon			
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/17/2015	14:55								0.2	0.4	58.92	
3/17/2015	15:00								0.34	1.7	59.3	
3/17/2015	15:05								0.34	1.7	59.4	
3/17/2015	15:10	11.43	7.07	226	0.502	8.54	0.02	346	0.4	2	59.57	
3/17/2015	15:15	11.43	7.11	116	0.483	8.27	0.02	332	0.4	2	59.6	
3/17/2015	15:20	11.47	7.13	70.1	0.478	8.24	0.02	322	0.4	2	59.63	
3/17/2015	15:25	11.47	7.13	48.5	0.477	8.3	0.02	313	0.4	2	59.66	
3/17/2015	15:30	11.83	7.15	32.6	0.475	8.23	0.02	296	0.39	1.95	59.64	
3/17/2015	15:35	11.77	7.15	16.6	0.474	8.24	0.02	288	0.39	1.95	59.63	

Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-161</u>
Project NO: <u>10012</u>	Project Location York, Pa
Purge Information	
Purge Date: 4/9/2015	Pump ID: monsoon # 82737
Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 16358
Purge Method: Positive Displacement	Total Purge Vol (gal) 24.02
Pump Set Depth (Ft BGS) : 66	
Total Depth of Well (Ft BGS): 67.7	
Initial Depth to Water (Ft BGS): <u>60.11</u>	
Sample Information	
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
Sample Date: <u>4/9/2015</u>	<u>Unit ID: 82737</u>
Sample Time: 14:12	Duplicate ID:
Sample ID: HD-MW-161-0/1-0	MS/MSD ID:
Notes:	
Purge Parameter Inform	nation
Temp pH Turb Con DO	Pr Pv DTW

Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/9/2015	13:00								0.44	1.32	60.9	
4/9/2015	13:05								0.33	1.65	60.77	
4/9/2015	13:10	13.7	7.42	466	0.417	8.03	0.02	285	0.32	1.6	60.75	
4/9/2015	13:15	13.78	7.45	689	0.421	8.04	0.02	280	0.36	1.8	60.98	
4/9/2015	13:20	13.76	7.47	603	0.419	8.01	0.02	276	0.37	1.85	61.08	
4/9/2015	13:25	13.54	7.49	308	0.429	7.81	0.02	273	0.25	1.25	60.63	
4/9/2015	13:30	13.92	7.46	183	0.427	7.91	0.02	272	0.27	1.35	60.7	
4/9/2015	13:35	14.18	7.45	112	0.428	7.9	0.02	269	0.33	1.65	60.75	
4/9/2015	13:40	13.9	7.44	93.3	0.427	7.93	0.02	268	0.33	1.65	60.81	
4/9/2015	13:45	13.52	7.46	61.4	0.429	7.79	0.02	266	0.3	1.5	60.72	
4/9/2015	13:50	13.84	7.45	79.1	0.424	7.97	0.02	259	0.32	1.6	60.77	empty flow-through cell
4/9/2015	13:55	13.76	7.43	39	0.422	8.22	0.02	252	0.34	1.7	60.89	
4/9/2015	14:00	13.72	7.44	23.8	0.427	8.06	0.02	241	0.34	1.7	60.92	
4/9/2015	14:05	13.77	7.45	20.6	0.426	8.04	0.02	227	0.34	1.7	60.94	
4/9/2015	14:10	13.76	7.44	11.2	0.428	8.01	0.02	219	0.34	1.7	60.92	

Sampling Event: 2015 Initial SPBA New W	Vell Sampling	<u>Well ID:</u> <u>MW-162</u>
Project NO: <u>10012</u>		Project Location York, Pa
	Purge Information	
Purge Date: <u>3/17/2015</u>		<u>Pump ID:</u> monsoon # 82951
Purged By: Ryan Ulrich		Water Quality Inst: Horiba W-22
Purge Technique: Low Yield		Water Quality Inst ID: 82605
Purge Method: Positive Displacement		<u>Total Purge Vol (gal)</u> 6.8
Pump Set Depth (Ft BGS): 53		
Total Depth of Well (Ft BGS): 55.3		
Initial Depth to Water (Ft BGS): <u>39.15</u>		
	Sample Information	
Sampled By: Ryan Ulrich		Sampled Method: Hand Bailer
Sample Date: <u>3/18/2015</u>		Unit ID:
Sample Time: 10:30		<u>Duplicate ID:</u>
Sample ID: HD-MW-162-0/1-0		MS/MSD ID:
Notes:		
1	Purge Parameter Inform	ation

i uige i uiumeter internation												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/17/2015	14:00								0.25	0.75	41.97	
3/17/2015	14:05								0.24	1.2	46.9	
3/17/2015	14:10	12.26	10.3	101	0.412	9.61	0.01	153	0.29	1.45	48.07	
3/17/2015	14:15	12.27	8.09	129	0.272	9.13	0.01	240	0.24	1.2	49.82	
3/17/2015	14:20	12.19	8.41	153	0.287	9.25	0.01	193	0.24	1.2		
3/17/2015	14:24								0.24	1		well cavitated

Samp	pling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-162</u>
<u>Proje</u>	ect NO: <u>10012</u>	Project Location York, Pa
	Purge Information	
Purg	e Date: <u>4/9/2015</u>	Pump ID: monsoon #82737
Purg	ed By: Ryan Ulrich	Water Quality Inst: Horiba U-22
Purg	e Technique: Low Yield	Water Quality Inst ID: 16358
<u>Purg</u>	e Method: Positive Displacement	<u>Total Purge Vol (gal)</u> <u>4.96</u>
<u>Pum</u>	p Set Depth (Ft BGS) : 53	
Total	l Depth of Well (Ft BGS): 55.3	
Initia	al Depth to Water (Ft BGS): 40.25	
	Sample Information	
Samp	bled By: Ryan Ulrich	Sampled Method: Hand Bailer
<u>Samp</u>	ble Date: 4/10/2015	Unit ID: Bailer
<u>Samp</u>	ble Time: 9:50	Duplicate ID:
<u>Samp</u>	ble ID: HD-MW-162-0/1-0	MS/MSD ID:
Notes:		

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/9/2015	11:10	13.03	10.71	153	0.335	8.81	0.01	151	0.25	1	45.68	
4/9/2015	11:15	13.4	10.02	158	0.221	8.6	0.01	167	0.33	1.65	48.2	
4/9/2015	11:20	13.5	9.07	360	0.264	8.43	0.01	171	0.33	1.65	50.83	
4/9/2015	11:22								0.33	0.66		well Cavitated
4/10/2015	9:50										46.94	

Sampling Event: 2015 Initial SPRA New Wells	Sampling Well ID: MW-163
Project NO: 10012	Project Location York Pa
<u>110ject NO.</u> <u>10012</u>	
<u>I</u>	Purge Information
Purge Date: <u>3/17/2015</u>	Pump ID: monsoon #82951
Purged By: Ryan Ulrich	Water Quality Inst: Horiba W-22
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	Total Purge Vol (gal) <u>32.85</u>
Pump Set Depth (Ft BGS) : 55	
Total Depth of Well (Ft BCS): 57.42	
Initial Depth to Weter (Ft DCS), 20.02	
initial Depth to Water (Ft BGS): 29.02	
<u>s</u>	Sample Information
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
Sample Date: 3/17/2015	<u>Unit ID: 82951</u>
Sample Time: 13:12	Duplicate ID:
Sample ID: HD-MW-163-0/1-0	MS/MSD ID:
- N - 4	
<u>INOTES:</u>	
Pur	ge Parameter Information

Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/17/2015	11:45								0.2	1	29.09	
3/17/2015	11:50								0.16	0.8	29.13	
3/17/2015	11:55								0.44	2.2	29.23	
3/17/2015	12:00	10.74	5.92	147	0.43	11.6	0.02	413	0.44	2.2	29.21	
3/17/2015	12:05	10.76	6.04	111	0.416	10.3	0.02	401	0.38	1.9	29.17	
3/17/2015	12:10	10.73	6.03	95.4	0.401	11.03	0.02	391	0.4	2	29.18	
3/17/2015	12:15	10.8	5.99	84	0.397	11.02	0.02	383	0.37	1.85	29.17	
3/17/2015	12:20	11.02	6	77.7	0.392	11.2	0.02	375	0.35	1.75	29.16	
3/17/2015	12:25	10.82	5.96	63.9	0.38	11.34	0.02	366	0.39	1.95	29.22	
3/17/2015	12:30	10.93	5.91	74.3	0.378	11.13	0.01	360	0.4	2	29.17	
3/17/2015	12:35	11.1	5.93	148	0.379	11.1	0.02	351	0.37	1.85	29.15	Recalibrate turb. On horiba
3/17/2015	12:50	11.04	5.76	21.4	0.381	10.82	0.02	364	0.38	5.7	29.18	
3/17/2015	12:55	11.02	5.83	19.6	0.373	10.24	0.01	353	0.38	1.9	29.19	
3/17/2015	13:00	10.8	5.82	20.2	0.368	10.29	0.01	346	0.39	1.95	29.2	
3/17/2015	13:05	10.99	5.85	19.5	0.367	10.22	0.01	341	0.38	1.9	29.18	
3/17/2015	13:10	11.12	5.85	16.4	0.365	10.28	0.01	337	0.38	1.9	29.19	

Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-163</u>
Project NO: 10012	Project Location York, Pa
Purge Infe	ormation
Purge Date: <u>4/8/2015</u>	Pump ID: monsoon # 82737
Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 16358
Purge Method: Positive Displacement	Total Purge Vol (gal) 43.2
Pump Set Depth (Ft BGS): 55	
Total Depth of Well (Ft BGS): 57.42	
Initial Depth to Water (Ft BGS): <u>31.72</u>	
Sample In	formation
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
Sample Date: <u>4/8/2015</u>	<u>Unit ID: 82737</u>
Sample Time: 16:17	Duplicate ID:
Sample ID: HD-MW-163-0/1-0	MS/MSD ID:
Notes:	
Purge Param	eter Information

Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
4/8/2015	14:35								0.57	2.85	31.94	
4/8/2015	14:40								0.45	2.25	31.91	
4/8/2015	14:45	12.82	6.49	614	0.396	9.89	0.02	194	0.39	1.95	31.88	
4/8/2015	14:50	12.83	6.47	458	0.388	9.74	0.02	209	0.38	1.9	31.87	
4/8/2015	14:55	12.86	6.41	492	0.382	9.9	0.02	226	0.37	1.85	31.88	
4/8/2015	15:00	12.87	6.34	474	0.378	10.05	0.02	239	0.38	1.9	31.88	
4/8/2015	15:05	12.88	6.32	451	0.376	10.11	0.01	246	0.39	1.95	31.89	
4/8/2015	15:10	12.84	6.29	453	0.373	10.15	0.01	253	0.4	2	31.89	
4/8/2015	15:15	12.84	6.27	405	0.37	10.17	0.01	260	0.43	2.15	31.89	
4/8/2015	15:20	12.79	6.24	456	0.368	10.18	0.01	265	0.4	2	31.89	clean out flow-through cell
4/8/2015	15:30	12.82	6.17	204	0.361	10.08	0.01	271	0.4	4	31.88	
4/8/2015	15:35	12.75	6.18	198	0.362	9.97	0.01	274	0.38	1.9	31.88	
4/8/2015	15:40	12.82	6.14	181	0.363	9.98	0.01	276	0.39	1.95	31.88	
4/8/2015	15:45	12.86	6.12	153	0.362	10	0.01	279	0.41	2.05	31.89	
4/8/2015	15:50	12.84	6.11	125	0.362	10.04	0.01	282	0.42	2.1	31.89	
4/8/2015	15:55	12.76	6.11	118	0.361	9.99	0.01	282	0.45	2.25	31.88	
4/8/2015	16:00	12.78	6.08	77.6	0.36	10.05	0.01	285	0.43	2.15	31.88	
4/8/2015	16:05	12.77	6.07	46.2	0.36	10.16	0.01	287	0.41	2.05	31.89	

GROUNDWATER SCIENCES CORPORATION

4	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-163</u>
]	Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information	
<u>]</u>	Purge Date: <u>4/8/2015</u>	<u>Pump ID:</u> monsoon # 82737
]	Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
]	Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 16358
<u>]</u>	Purge Method: Positive Displacement	Total Purge Vol (gal) 43.2
<u>]</u>	Pump Set Depth (Ft BGS): 55	
,	Total Depth of Well (Ft BGS): 57.42	
]	Initial Depth to Water (Ft BGS): <u>31.72</u>	
	Sample Information	
5	Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
5	Sample Date: <u>4/8/2015</u>	<u>Unit ID: 82737</u>
5	Sample Time: 16:17	Duplicate ID:
9	Sample ID: HD-MW-163-0/1-0	MS/MSD ID:
Notes:		

Purge Parameter Information													
	Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
	4/8/2015	16:10	12.84	6.05	48.6	0.36	10.17	0.01	289	0.4	2	31.89	
	4/8/2015	16:15	12.81	6.05	39.7	0.359	10.17	0.01	290	0.39	1.95	31.89	

Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-164</u>
Project NO: 10012	Project Location York, Pa
Purge In	formation
Purge Date: 3/16/2015	Pump ID: monsoon # 82951
Purged By: Ryan Ulrich	Water Quality Inst: Horiba W-22
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 21
Pump Set Depth (Ft BGS): 50	
Total Depth of Well (Ft BGS): 55.2	
Initial Depth to Water (Ft BGS): 33.04	
Sample I	nformation
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
Sample Date: <u>3/16/2015</u>	<u>Unit ID: 82951</u>
Sample Time: 15:37	Duplicate ID:
Sample ID: HD-MW-164-0/1-0	MS/MSD ID:
Notes:	

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/16/2015	14:35								0.24	1.2	35.61	
3/16/2015	14:40								0.37	1.85	35.83	
3/16/2015	14:45	10.75	5.45	67	5.88	8.9	0.3	326	0.37	1.85	36.94	
3/16/2015	14:50	10.66	5.39	71.5	5.81	8.52	0.3	321	0.37	1.85	37.32	
3/16/2015	14:55	10.68	5.32	57.4	5.77	8.86	0.3	325	0.37	1.85	37.49	
3/16/2015	15:00	10.65	5.3	52.4	5.78	8.61	0.3	325	0.34	1.7	37.34	
3/16/2015	15:05	10.75	5.29	50.6	5.76	8.7	0.3	324	0.34	1.7	36.74	
3/16/2015	15:10	10.8	5.28	49.8	5.74	8.96	0.3	321	0.34	1.7	36.34	
3/16/2015	15:15	10.66	5.31	49.3	5.71	8.97	0.3	308	0.42	2.1	38.9	
3/16/2015	15:20	10.75	5.29	49.9	5.75	8.86	0.3	308	0.26	1.3	36.51	
3/16/2015	15:25	10.67	5.29	23.2	5.72	8.84	0.3	308	0.26	1.3	36.5	
3/16/2015	15:30	10.69	5.29	17	5.71	8.82	0.3	306	0.26	1.3	36.48	
3/16/2015	15:35	10.72	5.29	16.4	5.72	8.8	0.3	304	0.26	1.3	36.47	

Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-164</u>
Project NO: 10012	Project Location York, Pa
Purge Information	
<u>Purge Date:</u> <u>4/8/2015</u>	Pump ID: monsoon #82737
Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 16358
Purge Method: Positive Displacement	Total Purge Vol (gal) 12.05
Pump Set Depth (Ft BGS) : 50	
Total Depth of Well (Ft BGS): 55.2	
Initial Depth to Water (Ft BGS): <u>37.02</u>	
Sample Information	
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
Sample Date: <u>4/8/2015</u>	<u>Unit ID: 82737</u>
Sample Time: 13:10	Duplicate ID:
Sample ID: HD-MW-164-0/1-0	MS/MSD ID:
Notes:	
Purge Parameter Inform	nation

	A wight a wanted an and an												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
4/8/2015	12:20								0.25	1.25	39.73		
4/8/2015	12:25								0.25	1.25	40.27		
4/8/2015	12:30								0.25	1.25	39.99		
4/8/2015	12:35	12.57	5.43	16.3	4.53	8.03	0.23	143	0.26	1.3	40.05		
4/8/2015	12:40	12.72	5.52	7.8	4.51	7.98	0.23	135	0.26	1.3	40.07		
4/8/2015	12:45	12.44	5.53	5.6	4.48	8.07	0.23	149	0.21	1.05	39.32		
4/8/2015	12:50	12.54	5.55	4.6	4.46	8.17	0.23	150	0.2	1	39.09		
4/8/2015	12:55	12.69	5.59	3.4	4.42	8.01	0.22	149	0.25	1.25	39.14		
4/8/2015	13:00	12.55	5.6	4	4.41	8.02	0.22	153	0.24	1.2	39.18		
4/8/2015	13:05	12.73	5.59	3.7	4.39	8.07	0.22	162	0.24	1.2	39.17		

	Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-165</u>
	Project NO: 10012	Project Location York, Pa
	Purge Informati	on
	Purge Date: <u>3/16/2015</u>	Pump ID: Monsoon #82951
	Purged By: Ryan Ulrich	Water Quality Inst: Horiba W-22
	Purge Technique: Low Yield	Water Quality Inst ID: 82605
	Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> <u>12</u>
	Pump Set Depth (Ft BGS): 70	
	Total Depth of Well (Ft BGS): 72.98	
	Initial Depth to Water (Ft BGS): 32.87	
	Sample Information	tion
	Sampled By: Ryan Ulrich	Sampled Method: Hand Bailer
	Sample Date: <u>3/17/2015</u>	Unit ID:
	Sample Time: 9:45	Duplicate ID:
	Sample ID: HD-MW-165-0/1-0	MS/MSD ID:
Notes:		

	Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
3/16/2015	11:40								0.11	0.55	34.2		
3/16/2015	11:45								0.11	0.55	37.95		
3/16/2015	11:50								0.12	0.6	42.71		
3/16/2015	11:55								0.12	0.6	45.38		
3/16/2015	12:00	11.22	6.82	95.8	1.5	4.82	0.07	300	0.13	0.65	47.19		
3/16/2015	12:05	10.94	6.82	89.7	1.41	4.37	0.06	276	0.13	0.65	49.21		
3/16/2015	12:10	11.4	6.85	111	1.41	4.22	0.06	260	0.13	0.65	53.36	Empty flow-through cell	
3/16/2015	12:15	11.54	6.9	107	1.41	5.16	0.06	258	0.13	0.65	54.2		
3/16/2015	12:20	11.51	6.9	113	1.31	4.55	0.06	258	0.21	1.05	55.9		
3/16/2015	12:25	11.43	6.85	324	1.49	4.83	0.07	262	0.21	1.05	57.53		
3/16/2015	12:30	11.46	6.77	606	1.64	5.11	0.08	266	0.2	1	58.66		
3/16/2015	12:35	11.69	6.88	1000	1.36	3.62	0.06	258	0.2	1	60.28		
3/16/2015	12:40	11.62	6.97	1000	1.12	2.44	0.05	248	0.2	1	62.02		
3/16/2015	12:45	11.52	7	677	1.15	1.74	0.05	245	0.2	1	64.15		
3/16/2015	12:48								0.32	0.96		Well cavitated	
3/17/2015	9:40										33.34		

<u>,</u>	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-165</u>
]	Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information	
]	Purge Date: <u>4/9/2015</u>	Pump ID: monsoon #82737
]	Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
]	Purge Technique: Low Yield	Water Quality Inst ID: 16358
]	Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> <u>11.1</u>
<u>]</u>	Pump Set Depth (Ft BGS) : 70	
,	Total Depth of Well (Ft BGS): 72.98	
]	Initial Depth to Water (Ft BGS): 39.29	
	Sample Information	
5	Sampled By: Ryan Ulrich	Sampled Method: Hand Bailer
5	Sample Date: <u>4/10/2015</u>	Unit ID: Bailer
5	Sample Time: <u>8:40</u>	Duplicate ID:
5	Sample ID: HD-MW-165-0/1-0	MS/MSD ID:
Notes:		

	Purge Parameter Information													
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes		
4/9/2015	9:40	13.06	6.41	148	1.47	6.44	0.07	270	0.76	3.8	57.61			
4/9/2015	9:45	13.25	6.63	1000	1.9	6.79	0.09	246	0.44	2.2	59.55			
4/9/2015	9:50	13.75	6.93	1000	1.7	4.14	0.08	227	0.58	2.9	65.73			
4/9/2015	9:54								0.55	2.2		well cavitated		
4/10/2015	8:40										39.25			

Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-166</u>										
<u>Project NO:</u> <u>10012</u>	Project Location York, Pa										
Purge Information											
Purge Date: <u>3/2/2015</u>	Pump ID: Monsoon Pump 82951										
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22										
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551										
Purge Method: Positive Displacement	Total Purge Vol (gal) 2.96										
Pump Set Depth (Ft BGS): 49											
Total Depth of Well (Ft BGS): 51.5											
Initial Depth to Water (Ft BGS): 45.6											
Sample Information											
Sampled By: Casey Littlefield	Sampled Method: Hand Bailer										
Sample Date: <u>3/3/2015</u>	Unit ID: Monsoon Pump 82951										
Sample Time: 11:45	Duplicate ID:										
Sample ID: HD-MW-166-0/1-0	MS/MSD ID:										
Notes:											
Purge Parameter Inform	nation										

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	13:42	12	5.85	-5	0.412	8.61	0	329	0.23		46	
3/2/2015	13:47	13.8	5.75	660	0.322	6.06	0	323	0.19	1.5	47.1	
3/2/2015	13:52	14.2	5.52	220	0.302	5.89	0	312	0.17	0.95		Water Level below pump.
3/2/2015	13:55									0.51		Cavitated Well

Sampling Event: 2015 2nd Rnd SPBA New	Well Sampling Well ID: MW-166
Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information
Purge Date: 3/24/2015	Pump ID: monsoon 82951
Purged By: Alan Miller	Water Quality Inst: Horiba U-22
Purge Technique: Low Yield	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 8
Pump Set Depth (Ft BGS): 50	
Total Depth of Well (Ft BGS): 51.5	
Initial Depth to Water (Ft BGS): <u>39.25</u>	
	Sample Information
Sampled By: Alan Miller	Sampled Method: Hand Bailer
Sample Date: <u>3/25/2015</u>	Unit ID: Bailer
Sample Time: 12:58	Duplicate ID:
Sample ID: HD-MW-166-0/1-0	MS/MSD ID:
Notes: pump fluctuating need to keep adjusting pump. Purge vol	lume is from actual bucket measurments recovery wl of 47.09' on 3/25/15 @ 1250

	Purge Parameter Information													
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes		
3/24/2015	13:40	10.32	6.1	-5	0.333	5.65	0.01	259						
3/24/2015	13:45	11.54	6.08	355	0.3	5.41	0.01	274	0.23	1.75	42.49			
3/24/2015	13:50	12.25	6.08	147	0.276	5.39	0.01	262	0.12		42.98			
3/24/2015	13:55	12.31	5.95	74.4	0.222	5.31	0.01	276	0.35	3.25	44.65			
3/24/2015	14:00	12.41	5.78	109	0.21	5.31	0.01	284			46.71			
3/24/2015	14:05	12.49	5.6	171	0.231	5.44	0.01	297				wl below top of pump.		
3/24/2015	14:06									3		Well Cavitated		

Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-167</u>										
<u>Project NO:</u> <u>10012</u>	Project Location York, Pa										
Purge Information											
Purge Date: <u>3/2/2015</u>	Pump ID: Monsoon Pump										
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22										
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551										
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 6.9										
Pump Set Depth (Ft BGS): 48.5											
Total Depth of Well (Ft BGS): 50.54											
Initial Depth to Water (Ft BGS): 37.4											
Sample Information											
Sampled By: Casey Littlefield	Sampled Method: Hand Bailer										
Sample Date: <u>3/3/2015</u>	Unit ID: Monsoon Pump 82951										
Sample Time: 12:00	Duplicate ID:										
<u>Sample ID:</u> <u>HD-MW-167-0/1-0</u>	MS/MSD ID:										
Notes:											
Purge Parameter Inform	nation										
	Pr Py DTW										

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	14:25	10.5	6.09	152	0.242	11.24	0	301	0.17		39.8	
3/2/2015	14:30	13.2	5.86	248	0.244	9.39	0	293	0.14	0.85	41.29	
3/2/2015	14:35	13.8	5.8	439	0.246	9.1	0	278	0.17	0.7	42.06	
3/2/2015	14:40	14.2	5.75	299	0.221	8.76	0	274	0.2	0.85	43.5	
3/2/2015	14:45	14.4	5.58	146	0.212	8.58	0	280	0.15	1	45.3	
3/2/2015	14:50	14.2	5.6	151	0.219	8.54	0	278	0.17	0.75	45.97	Flush Flow Cell and Clean Turbitity Sensor.
3/2/2015	14:55	14.1	5.67	193	0.233	8.61	0	271	0.23	0.85		Water Level Below Pump
3/2/2015	15:00	14.6	5.73	391	0.255	8.16	0	268	0.2	1.5		Water Level Below Pump
3/2/2015	15:02								0.2	0.4		Cavitated well.

Sampling Event: 2015 2nd Rnd SPBA New V	Well Sampling Well ID: MW-167
Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information
Purge Date: <u>3/25/2015</u>	Pump ID: monsoon 82951
Purged By: <u>Alan Miller</u>	Water Quality Inst: Horiba U-22
Purge Technique: <u>3 Well Volumes</u>	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 10
<u>Pump Set Depth (Ft BGS) :</u> 48.5	
Total Depth of Well (Ft BGS): 50.54	
Initial Depth to Water (Ft BGS): 27.22	
	Sample Information
Sampled By: Kaitlin Fleming	Sampled Method: Hand Bailer
Sample Date: <u>3/26/2015</u>	Unit ID: Bailer
Sample Time: 10:10	Duplicate ID:
Sample ID: HD-MW-167-0/1-0	MS/MSD ID:
Notes: pump rate is fluctuating and need to keep adjusting pump rate is fluctuating adjusted by the state is fluctuating adju	rate. Purge volume is actual bucket measurments. Recovery water level on 3/25/15 47.39' @

Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/18/2015	9:45	11.21	6.09	-5	0.263	11.09	0.01	361				
3/25/2015	9:46								0.15		30.91	
3/25/2015	9:50	12.25	6.18	-5	0.268	11.46	0.01	335	0.34		34.45	
3/25/2015	9:55	12.67	6.13	680	0.262	11.65	0.01	328	0.2	3	39.55	
3/25/2015	10:00	12.86	6.13	247	0.264	11.13	0.01	321		2	42.45	
3/25/2015	10:05	12.8	5.92	266	0.211	10.83	0.01	324			44.2	
3/25/2015	10:10	12.76	6.04	195	0.243	10.68	0.01	324		4		water below top of pump.
3/25/2015	10:12									1		cavitation

	Sampling Event: 2015 Initial SPBA New Well Sampling	Well ID: MW-168									
	Project NO: 10012	Project Location York, Pa									
Purge Information											
	Purge Date: <u>3/3/2015</u>	Pump ID: Monsoon Pump 82951									
	Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22									
	Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551									
	Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 9.5									
	Pump Set Depth (Ft BGS) : 38.5										
	Total Depth of Well (Ft BGS): 40.45										
	Initial Depth to Water (Ft BGS): 20.72										
Sample Information											
	Sampled By: Kaitlin Fleming Sampled Method: Hand Bailer										
	Sample Date: 3/4/2015	<u>Unit ID: Monsoon Pump 82951</u>									
	Sample Time: 9:10	Duplicate ID:									
	Sample ID: HD-MW-168-0/1-0	MS/MSD ID:									
Notes:											
	Purge Parameter Inform	<u>iation</u>									
Date	Temp. pH Turb Con. DO Time SI NTU G(mg/ Sol OPP	Pr Pv DTW ø/m gal feet Notes									

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/3/2015	8:42	13.8	5.74	137	1.86	8.99	0.1	324	0.28		23.84	
3/3/2015	8:47	15.1	6.27	894	1.24	7.6	0.1	265	0.3	1.4	27.2	
3/3/2015	8:52	14.9	6.21	465	1.12	7.35	0.1	191	0.19	1.5	30	
3/3/2015	8:57	15.4	6.22	856	1	7.1	0.1	202	0.19	0.95	31.42	
3/3/2015	9:02	15.7	6.16	-5	0.825	6.76	0.1	202	0.2	0.95	32.32	
3/3/2015	9:07	15.6	5.83	470	0.827	6.62	0.1	246	0.3	1	34	
3/3/2015	9:12	15.6	6.04	-5	1.34	6.43	0	249	0.2	1.5		Water level below pump.
3/3/2015	9:17	15.2	6.08	914	1.59	6.44	0.1	246	0.2	1		Water level below pump.
3/3/2015	9:22	15.5	6.16	787	1.77	6.42	0.1	246	0.2	1		Water level below pump.
3/3/2015	9:23									0.2		Cavitated Well

Sampling Event: 2015 2nd Rnd SPBA New	Well Sampling Well ID: MW-168
Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information
Purge Date: 3/24/2015	Pump ID: Monsoon 82951
Purged By: Alan Miller	Water Quality Inst: Horiba U-22
Purge Technique: Low Yield	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	Total Purge Vol (gal) 12.5
Pump Set Depth (Ft BGS): 38.5	
Total Depth of Well (Ft BGS): 40.45	
Initial Depth to Water (Ft BGS): <u>14.33</u>	
	Sample Information
Sampled By: Alan Miller	Sampled Method: Hand Bailer
Sample Date: <u>3/25/2015</u>	Unit ID: Bailer
Sample Time: 12:18	Duplicate ID:
Sample ID: <u>HD-MW-168-0/1-0</u>	MS/MSD ID:
Notes: Have had to keep adjusting pump rate through whole purg	ge. AGM Purge volume based on bucket measurments. Recovery wl on 3/25/15 14.94' @ 12:15

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/24/2015	10:45	11.9	6	345	0.241	7.84	0.01	342	0.28		17.33	
3/24/2015	10:50	11.63	5.96	274	0.241	7.54	0.01	342	0.34		20.65	
3/24/2015	10:55	12.59	5.85	400	0.221	7.98	0.01	318	0.24		22.65	
3/24/2015	11:00	12.37	5.78	385	0.218	7.96	0.01	306	0.1	2.5	23.01	
3/24/2015	11:05	12.87	5.78	270	0.205	7.86	0.01	304	0.25		24.39	
3/24/2015	11:08	12.93	5.76	104	0.202	7.82	0.01	313	0.32	2.5		
3/24/2015	11:11	13.04	5.84	53	0.205	7.8	0.01	309	0.16		27.35	
3/24/2015	11:15	13.14	5.81	440	0.202	7.74	0.01	314		2.5		
3/24/2015	11:20	13.24	5.77	892	0.198	7.62	0.01	308			31.72	
3/24/2015	11:25	13.42	5.61	-5	0.187	7.47	0.01	324		2.5	33.09	
3/24/2015	11:27											
3/24/2015	11:30	13.36	5.31	-5	0.165	7.37	0.01	343		2.5	34.02	
3/24/2015	11:35	13.58	5.61	-5	0.214	7.84	0.01	333			35.28	
3/24/2015	11:37									3.25		well cavitated
Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-169</u>											
---	---------------------------------------											
<u>Project NO:</u> 10012	Project Location York, Pa											
Purge I	nformation											
Purge Date: <u>3/18/2015</u>	<u>Pump ID:</u> monsoon #82951											
Purged By: Ryan Ulrich	Water Quality Inst: Horiba W-22											
Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 82605											
Purge Method: Positive Displacement	Total Purge Vol (gal) <u>16.2</u>											
Pump Set Depth (Ft BGS): 45												
Total Depth of Well (Ft BGS): 46.85												
Initial Depth to Water (Ft BGS): 32.15												
<u>Sample</u>	Information											
Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement											
Sample Date: <u>3/18/2015</u>	<u>Unit ID: 82951</u>											
Sample Time: 13:17	Duplicate ID:											
Sample ID: HD-MW-169-0/1-0	MS/MSD ID:											
Notes:												

Purge Parameter Information													
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
3/18/2015	12:35								0.3	1.5	32.38		
3/18/2015	12:40								0.3	1.5	32.35		
3/18/2015	12:45	12.57	5.08	54.3	0.388	6.63	0.02	377	0.34	1.7	32.44		
3/18/2015	12:50	12.68	5.06	24.1	0.371	6.6	0.01	357	0.34	1.7	32.44		
3/18/2015	12:55	12.61	5.04	14.7	0.363	6.71	0.01	350	0.36	1.8	32.45		
3/18/2015	13:00	12.64	5.03	14.1	0.361	6.62	0.01	346	0.4	2	32.43		
3/18/2015	13:05	12.29	5.03	11.2	0.357	6.68	0.01	343	0.4	2	32.4		
3/18/2015	13:10	12.57	5.03	7.1	0.358	6.65	0.01	339	0.4	2	32.39		
3/18/2015	13:15	12.57	5.02	7.8	0.356	6.63	0.01	333	0.4	2	32.4		

	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	Well ID: MW-169
	Project NO: 10012	Project Location York, Pa
	Purge Information	
	Purge Date: 4/10/2015	Pump ID: monsoon # 82737
	Purged By: Ryan Ulrich	Water Quality Inst: Horiba U-22
	Purge Technique: Well Yield Matched Purge	Water Quality Inst ID: 16358
	Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> <u>17</u>
	Pump Set Depth (Ft BGS): 45	
	Total Depth of Well (Ft BGS): 46.85	
	Initial Depth to Water (Ft BGS): 29.6	
	Sample Information	
	Sampled By: Ryan Ulrich	Sampled Method: Positive Displacement
	Sample Date: <u>4/10/2015</u>	<u>Unit ID: 82737</u>
	Sample Time: 12:32	Duplicate ID:
	Sample ID: HD-MW-169-0/1-0	MS/MSD ID:
Notes:		

	Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
3/29/2015	12:15	15.43	4.94	24.7	0.322	6.23	0.01	325	0.36	1.8	29.89		
4/10/2015	11:50								0.35	2.1	29.97		
4/10/2015	11:55	15.43	4.84	93.5	0.327	6.23	0.01	314	0.36	1.8	29.92		
4/10/2015	12:00	15.47	4.89	60.6	0.322	6.07	0.01	322	0.38	1.9	29.94		
4/10/2015	12:05	15.4	4.92	63.8	0.321	6	0.01	325	0.38	1.9	29.92		
4/10/2015	12:10	15.45	4.92	77.3	0.322	6.03	0.01	326	0.38	1.9	29.92	clean out flow-through cell	
4/10/2015	12:20	15.52	4.94	23.9	0.321	6.19	0.01	329	0.37	1.85	29.93		
4/10/2015	12:25	15.53	4.93	23	0.32	6.16	0.01	330	0.38	1.9	29.9		
4/10/2015	12:30	15.56	4.93	22.6	0.321	6.17	0.01	329	0.37	1.85	29.91		

	Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-170</u>
	Project NO: 10012	Project Location York, Pa
	Purge Information	
	Purge Date: 3/3/2015	Pump ID: Bailer
	Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22
	Purge Technique: <u>3 Well Volumes</u>	Water Quality Inst ID: 82551
	Purge Method: Hand Bail	<u>Total Purge Vol (gal)</u> 0.2
	<u>Pump Set Depth (Ft BGS) :</u>	
	Total Depth of Well (Ft BGS): 30.95	
	Initial Depth to Water (Ft BGS): <u>30.12</u>	
	Sample Information	
	Sampled By: Kaitlin Fleming	Sampled Method: Hand Bailer
	Sample Date: <u>3/4/2015</u>	<u>Unit ID: NA</u>
	Sample Time: 9:40	Duplicate ID:
	Sample ID: HD-MW-170-0/1-0	MS/MSD ID:
Notes:		

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/3/2015	9:45	12.4	5.59	-5	0.547	10.12	0	293				Cavitated Well only enough water for one water quality reading.

Sampling Event: 2015 2nd Rnd SPBA New	w Well Sampling	<u>Well ID:</u> <u>MW-170</u>				
Project NO: 10012		Project Location York, Pa				
	Purge Information					
Purge Date: 3/24/2015		Pump ID: NA				
Purged By: <u>Alan Miller</u>		Water Quality Inst: Horiba U-22				
Purge Technique: 3 Well Volumes		Water Quality Inst ID: 82605				
Purge Method: Hand Bail		<u>Total Purge Vol (gal) 4</u>				
<u>Pump Set Depth (Ft BGS) :</u>						
Total Depth of Well (Ft BGS): 30.95						
Initial Depth to Water (Ft BGS): 24.84						
	Sample Information					
Sampled By: Alan Miller		Sampled Method: Hand Bailer				
Sample Date: <u>3/25/2015</u>		Unit ID: Bailer				
Sample Time: 9:18		Duplicate ID:				
Sample ID: HD-MW-170-0/1-0		MS/MSD ID:				
Notes: recovery wl @ 24.65' on 3/25/15 @0913						

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/24/2015	9:55	9.82	6.96	36.2	0.625	7.57	0.03	345		0.25	24.84	
3/24/2015	9:59	11.09	6.4	160	0.593	8.18	0.02	347		1	25.97	
3/24/2015	10:04	11.32	6.09	126	0.567	7.86	0.02	343		1	26.88	
3/24/2015	10:12	12.32	5.86	655	0.577	7.31	0.02	349		1.75	28.72	

Sampling Event: 2015 Initial SPBA New Well Sampling	Well ID: <u>MW-171</u>
<u>Project NO:</u> 10012	Project Location York, Pa
Purge Information	
Purge Date: <u>3/3/2015</u>	Pump ID: Monsoon Pump 82951
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 9.1
Pump Set Depth (Ft BGS): 40	
Total Depth of Well (Ft BGS): 42.95	
Initial Depth to Water (Ft BGS): <u>36.18</u>	
Sample Information	
Sampled By: Casey Littlefield	Sampled Method: Hand Bailer
Sample Date: <u>3/3/2015</u>	Unit ID: Monsoon Pump 82951
Sample Time: 13:30	Duplicate ID:
Sample ID: <u>HD-MW-171-0/1-0</u>	MS/MSD ID:
Notes: Strong Sulfur Odor to purge water.	

Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/3/2015	10:15	13.4	6.56	-5	2.41	3.23	0.1	-120	0.36		36.45	
3/3/2015	10:20	13.8	6.58	-5	2.3	1.15	0.1	-133	0.4	1.8	36.63	
3/3/2015	10:25	14	6.58	466	2.22	0.36	0.1	-143	0.17	2		Water Level below top of pump.
3/3/2015	10:30	13.3	6.59	484	2.19	0.52	0.1	-147	0.19	0.85		
3/3/2015	10:35	13.1	6.6	376	2.2	0.52	0.1	-148	0.19	0.95		
3/3/2015	10:40	13.2	6.59	328	2.12	0.46	0.1	-149	0.17	0.95		
3/3/2015	10:45	13.3	6.58	304	2.18	0.36	0.1	-150	0.17	0.85		
3/3/2015	10:50	14	6.57	268	2.16	0.32	0.1	-151	0.19	0.85		
3/3/2015	10:55									0.85		Cavitated Well

Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-171</u>
Project NO: <u>10012</u>	Project Location York, Pa
Purge Informa	tion
<u>Purge Date:</u> 3/25/2015	Pump ID: monsoon 82951
Purged By: Alan Miller	Water Quality Inst: Horiba U-22
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82605
Purge Method: Positive Displacement	Total Purge Vol (gal) 21.5
Pump Set Depth (Ft BGS): 40.95	
Total Depth of Well (Ft BGS): 42.95	
Initial Depth to Water (Ft BGS): <u>32.64</u>	
Sample Inform	ation
Sampled By: Alan Miller	Sampled Method: Positive Displacement
Sample Date: <u>3/25/2015</u>	Unit ID: Monsoon 82951
Sample Time: 11:50	Duplicate ID:
Sample ID: <u>HD-MW-171-0/1-0</u>	MS/MSD ID:
Notes: pump rate is fluctuating. Purge volume from actual bucket measurment. Stabilized	purge parameters and sampled low flow technique.

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/25/2015	10:52	10.93	6.96	-5	2.07	0.42	0.09	-113				
3/25/2015	10:55	11.73	6.93	121	1.63	0	0.08	-141	0.26		33.48	
3/25/2015	11:00	12.16	6.91	56.3	1.65	0	0.08	-156			34.05	
3/25/2015	11:05	12.16	6.94	84	1.75	0	0.08	-208	0.42	5	35.98	
3/25/2015	11:10	12.16	6.97	126	1.85	0	0.09	-214		3.5	35.42	
3/25/2015	11:15	12.16	6.99	98.1	1.9	0	0.09	-218		1.5	35.78	
3/25/2015	11:20	12.19	6.99	217	1.95	0	0.09	-224		2.5	36.19	
3/25/2015	11:25	12.06	6.99	335	1.93	0	0.09	-228		2.5	36.46	
3/25/2015	11:30	12.09	7.01	50	1.94	0	0.09	-227		2	36.5	slowed pumping rate
3/25/2015	11:35	12.14	7.01	17.4	1.9	0	0.09	-227		3	36.69	
3/25/2015	11:40	11.79	7.03	6.4	1.86	0	0.09	-224			36.69	
3/25/2015	11:45	11.73	7.04	5.6	1.83	0	0.08	-221		1.5	36.69	

Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-172</u>
<u>Project NO:</u> <u>10012</u>	Project Location York, Pa
Purge Information	
Purge Date: <u>3/2/2015</u>	Pump ID: Monsoon Pump 82951
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 2.21
Pump Set Depth (Ft BGS): <u>35</u>	
Total Depth of Well (Ft BGS): 36.9	
Initial Depth to Water (Ft BGS): <u>32</u>	
Somela Information	
<u>Sample Information</u>	
Sampled By: Jennifer Reese	Sampled Method: Hand Bailer
Sample Date: <u>3/2/2015</u>	Unit ID: Monsoon Pump 82951
Sample Time: 15:40	Duplicate ID:
Sample ID: <u>HD-MW-MW-172-0/1-0</u>	MS/MSD ID:
Notes:	

Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	12:56	13.1	5.53	779	0.632	10.52	0	299	0.16		34	
3/2/2015	13:01	13.9	5.49	665	0.653	6.25	0	292	0.18	0.8	34.85	
3/2/2015	13:06	15.1	5.38	358	0.682	5.64	0	285	0.17	0.9		Water Level Below Pump
3/2/2015	13:09								0.18	0.51		Cavitated Well

Sampling Event: 2015 2nd Rnd SPBA N	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling							
Project NO: 10012		Project Location York, Pa						
	Purge Information							
Purge Date: <u>3/25/2015</u>		Pump ID: monsoon 82951						
Purged By: Alan Miller		Water Quality Inst: Horiba U-22						
Purge Technique: <u>3 Well Volumes</u>		Water Quality Inst ID: 82605						
Purge Method: Positive Displacement		Total Purge Vol (gal) 7.25						
Pump Set Depth (Ft BGS): 35								
Total Depth of Well (Ft BGS): 36.9								
Initial Depth to Water (Ft BGS): 27.71	<u>_</u>							
	Sample Information							
Sampled By: <u>Alan Miller</u>		Sampled Method: Hand Bailer						
Sample Date: <u>3/25/2015</u>		Unit ID: Bailer						
Sample Time: 13:28		Duplicate ID:						
Sample ID: HD-MW-172-0/1-0		MS/MSD ID:						
Notes: recovery wl @ 27.98' on 3/25/15 @ 1323.								

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/25/2015	7:48	11.28	5	256	0.814	7.59	0.03	374				
3/25/2015	7:51										29.69	
3/25/2015	7:53	12.08	5.05	18.5	0.779	7.32	0.03	325		2.5	31.85	
3/25/2015	7:56											stopped purge to fix flow cell
3/25/2015	7:58	11.65	5.39	36.7	0.806	8.08	0.03	308		2.5	32.85	
3/25/2015	8:03	12.62	5.35	86.9	0.813	7.58	0.03	303				
3/25/2015	8:06									2.25		cavitate

Sampling Event: 2015 Initial SPBA New Well Sampling	<u>Well ID:</u> <u>MW-173</u>					
Project NO: 10012	Project Location York, Pa					
Purge Information						
Purge Date: 3/2/2015	Pump ID: Monsoon Pump					
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22					
Purge Technique: Low Flow Parameter Stabilization	Water Quality Inst ID: 82551					
Purge Method: Positive Displacement	<u>Total Purge Vol (gal)</u> 7.8					
Pump Set Depth (Ft BGS): 29						
Total Depth of Well (Ft BGS): <u>31.05</u>						
Initial Depth to Water (Ft BGS): 18.22						
Sample Information						
Sampled By: Casey Littlefield	Sampled Method: Hand Bailer					
Sample Date: <u>3/3/2015</u>	Unit ID: Monsoon Pump 82951					
Sample Time: 11:00	Duplicate ID:					
<u>Sample ID:</u> <u>HD-MW-173-0/1-0</u>	MS/MSD ID:					
Notes:						
Purge Parameter Inform	nation					
Temp. pH Turb Con. DO	Pr Pv DTW					

Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	11:50	13.7	5.18	-5	0.578	2.97	0	302	0.2		21.52	
3/2/2015	11:55	14.2	5.15	353	0.567	2.77	0	284	0.14	1	22.55	
3/2/2015	12:00	14.1	5.15	277	0.565	2.73	0	282	0.11	0.7	22.85	
3/2/2015	12:05	13.8	5.14	320	0.555	2.77	0	277	0.2	0.55	23.35	
3/2/2015	12:10	14.9	5.05	307	0.568	3.82	0	287	0.36	1	24.55	
3/2/2015	12:15	14.8	5.12	318	0.598	4.31	0	289	0.28	1.8	26.1	
3/2/2015	12:20	14.7	5.2	472	0.601	3.8	0	287	0.13	1.4	27.85	
3/2/2015	12:25	14.5	5.22	381	0.611	3.57	0	283	0.12	0.65		Water Level below pump
3/2/2015	12:30	14.7	5.28	258	0.613	3.46	0	280	0.12	0.6		Water Level below pump
3/2/2015	12:33								0.12	0.1		Cavitated Well

	Sampling Event: 2015 2nd Rnd SPBA New W	Vell Sampling	<u>Well ID:</u> <u>MW-173</u>
	Project NO: 10012		Project Location York, Pa
		Purge Information	
	Purge Date: 3/24/2015		Pump ID: monsoon 82951
	Purged By: <u>Alan Miller</u>		Water Quality Inst: Horiba U-22
	Purge Technique: <u>3 Well Volumes</u>		Water Quality Inst ID: 82605
	Purge Method: Positive Displacement		<u>Total Purge Vol (gal)</u> <u>11</u>
	Pump Set Depth (Ft BGS) : 29.05		
	Total Depth of Well (Ft BGS): 31.05		
	Initial Depth to Water (Ft BGS): 12.16		
		Sample Information	
	Sampled By: Alan Miller		Sampled Method: Hand Bailer
	Sample Date: <u>3/25/2015</u>		Unit ID: Bailer
	Sample Time: 12:32		Duplicate ID:
	Sample ID: <u>HD-MW-173-0/1-0</u>		MS/MSD ID:
Notes:	had to adjust purge rate keeps dropping. Purge volume based	d on actual bucket measurments. T	Fotal of 11 gallons. Recovery wl 22.67' on 3/25/15 @ 1230.

	Purge Parameter Information											
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/24/2015	12:24	11.52	5.4	249	0.508	3.57	0.02	353				
3/24/2015	12:30	11.1	5.38	198	0.507	3.3	0.02				18.55	
3/24/2015	12:32								0.31			
3/24/2015	12:35	11.09	5.38	89.2	0.502	3.03	0.02	309			22.01	
3/24/2015	12:37										23.78	
3/24/2015	12:40	12.26	5.33	447	0.494	4.96	0.02	316	0.43		26.32	
3/24/2015	12:45	12.66	5.39	472	0.508	4.99	0.02	310				
3/24/2015	12:48											cavitation

	Sampling Event: 2015 Initial SPBA New Well S	Sampling	<u>Well ID:</u> <u>MW-174</u>
	Project NO: 10012		Project Location York, Pa
	<u>1</u>	Purge Information	
	Purge Date: <u>3/2/2015</u>		Pump ID: Bailer
	Purged By: Casey Littlefield		Water Quality Inst: Horiba W-22
	Purge Technique: <u>3 Well Volumes</u>		Water Quality Inst ID: 82551
	Purge Method: Hand Bail		<u>Total Purge Vol (gal) 1</u>
	<u>Pump Set Depth (Ft BGS) :</u>		
	Total Depth of Well (Ft BGS): 30.4		
	Initial Depth to Water (Ft BGS): 27.86		
	<u>S</u>	ample Information	
	Sampled By: Casey Littlefield		Sampled Method: Hand Bailer
	Sample Date: <u>3/3/2015</u>		<u>Unit ID: NA</u>
	Sample Time: 11:20		Duplicate ID:
	Sample ID: HD-MW-174-0/1-0		MS/MSD ID:
Notes:			

	Purge Parameter Information											
Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	11:00	11.7	6.36	339	1.11	10.25	0	294			28.15	Initial
3/2/2015	11:04	11.7	6.86	-5	1.09	10.71	0	292			28.74	1 well volume
3/2/2015	11:13	11.8	6.83	-5	1.06	5.9	0	297			29.6	2 Well volumes
3/2/2015	11:16										30.03	Cavitated well

	Sampling Event: 2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-174</u>
	<u>Project NO:</u> <u>10012</u>	Project Location York, Pa
	Purge Information	
	Purge Date: 3/24/2015	Pump ID: NA
	Purged By: Alan Miller	Water Quality Inst: Horiba U-22
	Purge Technique: <u>3 Well Volumes</u>	Water Quality Inst ID: 82605
	Purge Method: Hand Bail	<u>Total Purge Vol (gal)</u> <u>3.5</u>
	Pump Set Depth (Ft BGS) :	
	Total Depth of Well (Ft BGS): <u>30.4</u>	
	Initial Depth to Water (Ft BGS): <u>24.12</u>	
	Sample Information	
	Sampled By: Alan Miller	Sampled Method: Hand Bailer
	Sample Date: <u>3/25/2015</u>	Unit ID: Bailer
	Sample Time: 8:58	Duplicate ID:
	<u>Sample ID:</u> <u>HD-MW-174-0/1-0</u>	MS/MSD ID:
Notes:	Recovery wl @ 27.19 om 3/25/15 @0849 as per JSR FSP says we need sufficuent water in we	Il to sample with 3' in the well we can sample.

	Purge Parameter Information												
Date	Time	Temp. °C	рН SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
3/24/2015	9:16	8.72	6.59	44.6	0.875	6.5	0.04	368					
3/24/2015	9:18	10.17	6.88	626	0.82	6.25	0.03	359		1.25			
3/24/2015	9:24	10.19	6.83	891	0.868	5.56	0.04	359		1.25	27.2		
3/24/2015	9:31	10.61	6.99	-5	0.981	6.98	0.04	354		1	28.93		

Sampling Event: 2015 Initial SPBA New We	ell Sampling Well ID: MW-175
Project NO: <u>10012</u>	Project Location York, Pa
	Purge Information
Purge Date: <u>3/2/2015</u>	Pump ID: Bailer
Purged By: Casey Littlefield	Water Quality Inst: Horiba W-22
Purge Technique: <u>3 Well Volumes</u>	Water Quality Inst ID: 82551
Purge Method: Hand Bail	<u>Total Purge Vol (gal)</u> 0.5
Pump Set Depth (Ft BGS) :	
Total Depth of Well (Ft BGS): 28.55	
Initial Depth to Water (Ft BGS): 27.07	
	Sample Information
Sampled By: Jennifer Reese	Sampled Method: Hand Bailer
Sample Date: <u>3/2/2015</u>	<u>Unit ID: NA</u>
Sample Time: 15:25	Duplicate ID:
Sample ID: HD-MW-175-0/1-0	MS/MSD ID:
Notes: Not enough water for pump. Hand bail 3 well volumes. Co	ollecting parameters Intialy and after each well volume. Sample ID: HD-MW-175-0/1-0

Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes
3/2/2015	10:30	13	5.29	-5	0.674	9.39	0	354				
3/2/2015	10:35	13.4	5.84	-5	0.593	7.2	0	338			27.7	One well volume
3/2/2015	10:45	13.5	5.91	-5	0.575	6.8	0	356			28.21	Second well volume. Cavitated well after .5 gallons

Sampling Event:	2015 2nd Rnd SPBA New Well Sampling	<u>Well ID:</u> <u>MW-175</u>
Project NO: 100	012	Project Location York, Pa
	Purge Information	
Purge Date: 3/24	<u>1/2015</u>	Pump ID: NA
Purged By: Ala	n Miller	Water Quality Inst: Horiba U-22
Purge Technique	e: <u>3 Well Volumes</u>	Water Quality Inst ID: 82605
Purge Method:	Hand Bail	Total Purge Vol (gal) 3.25
Pump Set Depth	(Ft BGS) :	
<u>Total Depth of V</u>	Vell (Ft BGS): 28.55	
Initial Depth to V	Water (Ft BGS): 22.76	
	Sample Information	
Sampled By: Ala	n Miller	Sampled Method: Hand Bailer
Sample Date: 3/2	25/2015	Unit ID: Bailer
Sample Time: 8:3	<u>35</u>	Duplicate ID:
Sample ID: HD-N	<u>MW-175-0/1-0</u>	MS/MSD ID:
Notes: Recovry wl 0829 @23.	.16'	

	Purge Parameter Information												
Date	Time	Temp. °C	pH SU	Turb NTU	Con. mS/cm	DO mg/	Sal	ORP	Pr g/m	Pv gal.	DTW feet	Notes	
3/24/2015	8:32	981	6.15	387	0.467	6.96	0.02	412		1.5	24.31		
3/24/2015	8:40	10.77	5.92	-5	0.484	7.27	0.02	405		1	26.19		
3/24/2015	8:46									0.75	27.28		

Appendix F

USDA Soil Texture Trilinear Diagrams

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
8.0'-8.5'	52.7%	8.2%	39.2%	SANDY LOAM
16.0'-16.5'	29.6%	33.2%	37.2%	CLAY LOAM
23.0'-23.5'	24.0%	28.0%	48.0%	CLAY LOAM
30.5'-31.0'	13.9%	47.0%	39.0%	CLAY
38.0'-38.5'	18.7%	35.3%	46.0%	SILTY CLAY LOAM
Ontional S	and 1			MW-162
% Very Coarse	0.0%			
% Coarse	0.0%			100
% Medium	0.0%			Δ
% Fine	0.0%			$\sim \wedge \wedge \approx$
% Very Fine	0.0%			$90 \left(\times \right)$
	0.070			$7 (\times \times)$
Ontional S	and 2			
% Very Coarse	0.0%			/ ⁸⁰ XXX \
% Coarse	0.0%			/ / X X X X » `
% Medium	0.0%			$\sim 10^{10}$
% Fine	0.0%			$\sqrt{\frac{10}{10}{\frac{10}{\frac{10}{10}{10}{\frac{10}{10}{10}{10}{10}}}}}}}}}}$
% Very Fine	0.0%			X X X A X X A SE
	0.070			S 60 VVVVVV S C
Optional S	and 3			
% Very Coarse	0.0%			S AXXXXXXXXXX
% Coarse	0.0%			$50 \times \times$
% Medium	0.0%		-P	
% Fine	0.0%		0	/sandy
% Very Fine	0.0%		4	$0 \leftarrow \text{clay} - \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X} \times \mathbf{X}$
			/	$\langle \vee \vee$
Optional S	and 4		1 1	A A A A A A A A A A A A A A A A A A A
% Very Coarse	0.0%	4	$/ 30 \neq$	\rightarrow sandy $\times \times \times$
% Coarse	0.0%	/		Clay loam
% Medium	0.0%		\sim	$(\langle \langle \rangle \rangle) (\langle \rangle) (\langle \rangle \rangle) (\langle \rangle \rangle) (\langle \rangle) (\langle \rangle \rangle) (\langle \rangle $
% Fine	0.0%		20 X X	$\Lambda \Lambda \Lambda \Lambda$ loam $\Lambda \Lambda \Lambda$ silt $\Lambda \Lambda \Lambda$
% Very Fine	0.0%		6X	$X \times V \times X \times $
		10	100	V sandy VVVVV Volam VAA
Optional S	and 5	10		
% Very Coarse	0.0%	F	Joar	$my \times X $ silt λ S
% Coarse	0.0%	<u> </u>		sand $\nabla \nabla \nabla$
% Medium	0.0%	5	Se	8 1 6 5 8 5 15 15
% Fine	0.0%	SO	0	A Sand Sanarata (%
% Very Fine	0.0%			• Sand Separate, %
		L		

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
8.4'-8.8'	18.5%	35.0%	46.5%	SILTY CLAY LOAM
14.0'-14.4'	16.5%	35.5%	48.0%	SILTY CLAY LOAM
22.4'-22.8'	40.6%	24.6%	34.8%	LOAM
31.6'-32.0'	65.1%	9.6%	25.3%	SANDY LOAM
39.0'-39.4'	38.4%	28.7%	32.9%	CLAY LOAM
0				MW-168
Optional S	and 1			
% Very Coarse	0.0%			100 ^
% Coarse	0.0%			
% Medium	0.0%			$\nabla \wedge \diamond$
% Fille	0.0%			$90 \leftarrow X \rightarrow$
% very rine	0.0%			
Ontional S	and 2			$/ \sim / / / \sqrt{2} /$
% Very Coarse	0.0%			$/ 80 \overline{\times \times \times \times}$
% Coarse	0.0%			$\langle \langle X X X X \rangle \rangle$
% Medium	0.0%			$\gamma_0 / \vee \vee \vee \vee \vee \vee \vee \vee$
% Fine	0.0%			$\sqrt{\frac{10}{10}}$
% Verv Fine	0.0%			X X X X X X S
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01070			S 60 VVVVVV S C
Optional S	and 3			
% Very Coarse	0.0%			S AXXXXXXXXXX
% Coarse	0.0%			$50 \times X \times X \times X \times X \times X$ site λ ?
% Medium	0.0%		5	
% Fine	0.0%		0	$/sandy \land \land$
% Very Fine	0.0%		4	$0 \leftarrow \text{clay} - \frac{X \times X \times X \times X \times X \times X}{X \times X \times X \times X}$
			/	silty >
Optional S	and 4		1 20 1	//////////////////////////////////////
% Very Coarse	0.0%		/ 30	sandy $$
% Coarse	0.0%	/	k	X clay loam X X X X X X X X X X X X
% Medium	0.0%		20 /V	$\langle \vee \vee \vee \vee \rangle \rangle \rangle \langle \vee $
% Fine	0.0%		20	$\Lambda \Lambda \Lambda \Lambda$ loam $\Lambda \Lambda$ silt $\Lambda \Lambda$
% Very Fine	0.0%		KX-	$X \times X \times$
	15	10	LYX	
Optional S	and 5		Nin	
% Very Coarse	0.0%	1	and	NY XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
% Coarse	0.0%	<u> </u>		sand \bigvee
% Medium	0.0%	10	S	8 6 8 8 8 6 6
% Very Fine	0.0%	0		← Sand Separate, %
	0.0%			

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
7.8'-8.2'	39.1%	23.0%	37.9%	LOAM
11.8'-12.2'	35.8%	16.7%	47.5%	LOAM
16.6'-17.0'	18.0%	31.0%	51.0%	SILTY CLAY LOAM
20.8'-21.2'	20.5%	31.5%	48.0%	CLAY LOAM
28.6'-29.0'	37.0%	19.7%	43.3%	LOAM
Ontional S	and 1			MW-170
Uptional S				
% Very Coarse	0.0%			100 ^
% Medium	0.0%			
% Fine	0.0%			$\sim \wedge \wedge \approx$
% Very Fine	0.0%			$90 \left(\times \right)$
	0.070			
Optional S	and 2			
% Very Coarse	0.0%			
% Coarse	0.0%			/ $(X X X X) $ (x)
% Medium	0.0%			$70 \checkmark \lor \lor \lor \lor \lor \lor \lor \circ$
% Fine	0.0%			No Clay///
% Very Fine	0.0%			* XXXXXX
				5 60 X X X X X X X X X X
Optional S	and 3			
% Very Coarse	0.0%		0	$\mathbf{s} = \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{S} \mathbf{s}$
% Coarse	0.0%		4	$^{\circ}$ 50 \langle X X X X X X X X X X X Silty \rangle $^{\circ}$
% Medium	0.0%		a.	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
% Fine	0.0%		0	
% Very Fine	0.0%		4	$d \land d \land d \land \land$
Ontional C	and 1		/	$\overline{X X X X}$ (lay loam \overline{X} silty $\overline{\lambda} \otimes \overline{\lambda}$
Vory Coorse			/ 30 /	∇ candy ∇ ∇ ∇ ∇ ∇ ∇ ∇ ∇ clay loam ∇
% Coarse	0.0%	/		
% Medium	0.0%			\times (a) (ball \times
% Fine	0.0%		20 X	$\times \times $
% Verv Fine	0.0%		ΔV	
, ,			\bigwedge	$\wedge \wedge \text{sandy} \wedge X \wedge \wedge \wedge \wedge \text{loam} \wedge \wedge \wedge \wedge \otimes$
Optional S	and 5	10	$\land \land \land$	\times loam \times
% Very Coarse	0.0%	4	Vloar	$ny \times \times$
% Coarse	0.0%	/ 8	and	
% Medium	0.0%	1	9	8 4 6 5 8 2 2 2 1
% Fine	0.0%	8	0	
% Very Fine	0.0%			Sand Separate, %
		L		

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
8.6'-9.0'	40.1%	25.7%	34.2%	LOAM
13.2'-13.6'	46.6%	14.3%	39.2%	LOAM
20.0'-20.4'	20.7%	22.4%	56.9%	SILT LOAM
22.4'-22.8'	24.7%	16.1%	59.2%	SILT LOAM
27.4'-27.8'	24.9%	5.0%	70.1%	SILT LOAM
Ontional S	and 1			MW-171
Vory Coorse				
% Very Coarse	0.0%			100 ^
% Coarse	0.0%			
% Fine	0.0%			$\sim \sim \sim \circ$
% Very Fine	0.0%			$90 \not\leftarrow \chi \rightarrow$
	0.070			
Ontional S	and 2			
% Very Coarse	0.0%			/ 80 XXXX \
% Coarse	0.0%			$\langle \langle X X X X \rangle \rangle$
% Medium	0.0%			$70/\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
% Fine	0.0%			$\sqrt{\frac{1}{\sqrt{1}}{\sqrt{\frac{1}{\sqrt{1}}}}}}}}}}$
% Verv Fine	0.0%			X X X X X X X
, e : e. y :e	0.070			S 60 V V V V V V V S
Optional S	and 3			
% Very Coarse	0.0%			S AXXXXXXXXXXX
% Coarse	0.0%			$50 \times X \times X \times X \times X \times X$ site λ ?
% Medium	0.0%		5	
% Fine	0.0%		G	/sandy / / / / / / / S
% Very Fine	0.0%		4	$0 \leftarrow \text{clay} - \frac{X \times X \times X \times X \times X \times X}{X \times X \times X \times X}$
			/	\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark silty \rightarrow \sim
Optional S	and 4		1 20 1	$\langle \rangle \rangle \langle \rangle \langle \rangle \rangle$
% Very Coarse	0.0%		/ 30/	sandy XXXXXXXXXXX
% Coarse	0.0%	/	K	X clay loam X X X X X X X X X X X X X
% Medium	0.0%		20	$(\vee \vee \vee \vee \times \times$
% Fine	0.0%		20	$\Lambda \Lambda \Lambda \Lambda$ loam $\Lambda \Lambda$ silt $\Lambda \Lambda$
% Very Fine	0.0%		$\wedge X$	$X \times sandy X \times X \times X \times hoam \times X \times \lambda \gg$
Ontional S	and E	10	(X)	\times \downarrow
Optional S		/	Nion	
% Very Coarse	0.0%	1	and	N A A A A A A A A A A A A A A A A A A A
% Coarse	0.0%	<u> </u>		
	0.0%	10	0e	8 6 8 8 8 8 6 6
% Very Fine	0.0%	0		← Sand Separate, %
	0.0 %			

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
11.0'-11.4'	43.4%	17.4%	39.2%	LOAM
16.0'-16.4'	16.5%	22.5%	61.0%	SILT LOAM
21.4'-21.8'	24.4%	24.5%	51.1%	SILT LOAM
28.0'-28.4'	31.6%	22.6%	45.8%	LOAM
30.8'-31.2'	34.9%	18.1%	47.1%	LOAM
Ontional S	and 1			MW-173
% Very Coarse	0.0%			
% Coarse	0.0%			100
% Medium	0.0%			Δ
% Fine	0.0%			$\sim \sqrt{\sqrt{2}}$
% Very Fine	0.0%			$90 \land X \land$
	0.070			$7 (\times \times) ($
Optional S	and 2			
% Very Coarse	0.0%			80 XXXX \
% Coarse	0.0%			$\langle \langle X X X X \rangle \rangle$
% Medium	0.0%			$70 / / / / / \sqrt{\gamma}$
% Fine	0.0%			$\sim \sim $
% Verv Fine	0.0%			X X X X X X ST
				S 60 / V V V V V V V S
Optional S	and 3			5° °^////// °2
% Very Coarse	0.0%			S AXXXXXXXXXXX
% Coarse	0.0%		-	$50 \times \times$
% Medium	0.0%		5	
% Fine	0.0%		0	/sandy
% Very Fine	0.0%		4	$0 \land - clay - X \times X$
			/	$\bigvee \bigvee $
Optional S	and 4		1	A A A A Clay loam A Clay loam A
% Very Coarse	0.0%	-	/ 30 /	\rightarrow sandy $\times \times \times$
% Coarse	0.0%	1	-	Clay loam XXXXXXXXXX
% Medium	0.0%		\sim	$(\ \ \ \ \ \ \ \ \ \ \ \ \ $
% Fine	0.0%		20	$\dot{\Lambda}$
% Very Fine	0.0%		KX-	X X V V X X X X X X X I am X X X A
		10	100	V sandy VVVVV V Voan VVV
Optional S	and 5	10	\sim	
% Very Coarse	0.0%	E F	loai	$\frac{my}{x} \times \frac{x}{x} \times x$
% Coarse	0.0%	1.5	and	
% Medium	0.0%	5	Se	8 1 6 5 8 5 15 15
% Fine	0.0%	S	0	A Sand Sanarata %
% Very Fine	0.0%			- Saliu Separate, 70
		L		

Sample Depth	% Sand	% Clay	% Silt	USDA Texture
8.2'-8.6'	34.2%	28.1%	37.7%	CLAY LOAM
13.8'-14.2'	69.9%	13.4%	16.6%	SANDY LOAM
18.4'-18.8'	59.3%	24.3%	16.4%	SANDY CLAY LOAM
21.4'-21.8'	32.9%	28.0%	39.2%	CLAY LOAM
22.6'-23.0'	65.1%	16.3%	18.6%	SANDY LOAM
				N/N/ 475
Optional S	and 1			
% Verv Coarse	0.0%			
% Coarse	0.0%			100
% Medium	0.0%			\overleftrightarrow
% Fine	0.0%			
% Very Fine	0.0%			
				$\langle X X \rangle \otimes \langle$
Optional S	and 2			$80 \swarrow \lor \lor \lor \lor \lor$
% Very Coarse	0.0%			
% Coarse	0.0%			/ X X X X » `
% Medium	0.0%			$70 \leftarrow \times $
% Fine	0.0%			No Clay///
% Very Fine	0.0%			e AXXXXXX
				S 60 (X X X X X X X X X X X X X X X X X X
Optional S	and 3			
% Very Coarse	0.0%		6	$\mathbf{s}_{\mathbf{r}} \wedge \mathbf{s}_{\mathbf{r}}$
% Coarse	0.0%		4	$^{\circ}$ 50 $(X \times X \times X \times X \times X \times X)$ silty γ $^{\circ}$
% Medium	0.0%		a.	Clay S
% Fine	0.0%		Ο,	
% Very Fine	0.0%		4	$0 \land clay \land \land$
0.11.10			/	\overrightarrow{X}
Optional S	and 4		/ 30 /	$\langle \langle \langle \rangle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle $
% Very Coarse	0.0%	,	1 30	
% Coarse	0.0%	/	<u> </u>	χ clay bam $\chi/\chi \chi \chi$
% Medium	0.0%		$20 \not\leftarrow \vee$	V V V V V V V V V V V V
% Fille	0.0%			$\langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $
% very Fille	0.0%			\land sandy \land
Ontional S	and 5	10	$\leftarrow X \rightarrow $	\times loam $\times \times \times$
% Very Coarse	0.0%		Nioar	
% Coarse	0.0%	/s	and N.	sand AAAAAAAAAAAAA
% Medium	0.0%		× v v	
% Fine	0.0%	0	6	5 5 5 5 5 5 5
% Very Fine	0.0%	5		← Sand Separate, %
	0.070			

Appendix G

VISL Spreadsheet Calculations

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-161

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Cgw	Cia	0.0	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	UK	ΗQ
67-66-3	Chloroform	3.7E-01	3.06E-02	2.5E-07	3.0E-04
127-18-4	Tetrachloroethylene	2.7E+02	9.21E+01	8.5E-06	2.2E+00
70-01-6	Trichloroethylene	1.0E+02	2 05E+01	8 3E-05	9.8E±00

Inhalation Unit Risk	IUR Sourcest	Reference Concentration	RFC	Mutagenic Indicator		
IUR	Source	RfC	Source			
(ug/m ³) ⁻¹		(mg/m ³)		i		
2.30E-05		9.80E-02	Α			
2.60E-07		4.00E-02				
4.10E-06		2.00E-03		Mut		

Selected (based on

scenario)

mIURTCE GW 1.00E-06

IURTCE GW 3.10E-06

Value

Symbol

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME)	Units	Reside	ntial	Commer	cial	Selected	(based on	
(.)		C into					sce	nario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)	ATc R GW	70	ATc C GW	70	ATc GW	70	
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc_C_GW	25	Atnc GW	26	
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_GW	26	
	Exposure frequency	(days/yr)	EF_R_GW	350	EF_C_GW	250	EF_GW	350	
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET_GW	24	
							0.1		
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected	(based on nario)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value	
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GV	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03	

(3) **Formulas**

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

mIURTCE R GW

Residential

Value

1.00E-06 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06

Commercial

IURTCE C GW 0.00E+00

Symbol

Value

Note: This section applies to trichloroethylene and oth mutagenic chemicals, but not to vinyl chloride.	er 0 - 2 years	Exposure Duration 2	Age-dependent adjustment factor 10	1
	2 - 6 years	4	3	
	6 - 16 years	10	3	
	16 - 26 years	10	1	
Mutagenic-me	ode-of-action (MMOA) adj	ustment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride See the Nati	vigation Guide equation for	Cia,c for vinyl cł	loride.	
Notation: I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available or	http://www.epa	.gov/iris/subst/ind http://hhpp	ex.html rtv.ornl.gov/pprtv.shtml	
A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Leve	els (MRLs). Available online	e at:	http://www.a	atsdr.cdc.gov/mrls/index.html
CA = California Environmental Protection Agency/Office of Environmental Health Haz	ard Assessment assessme	nts. Available o	nline at:	http://www.oehha.ca.gov/risk/ChemicalDB/index.asp
H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST)	database. Available online	at:	http://epa-heast.o	rnl.gov/heast.shtml
S = See RSL User Guide, Section 5				
X = PPRTV Appendix				
Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure pa	arameters apply (see footno	te (4) above).		
VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for e	equation).			
TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see for	otnote (4) above).			

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MANA ACO

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	
CAS	Chemical Name	Cgw (ug/L)	Cia (ug/m ³)	CR	HQ	
75-35-4	Dichloroethylene, 1,1-	1.2E+00	7.74E-01	No IUR	3.7E-03	
75-09-2	Methylene Chloride	1.4E+00	1.07E-01	1.1E-09	1.7E-04	
127-18-4	Tetrachloroethylene	7.0E+02	2.39E+02	2.2E-05	5.7E+00	
79-01-6	Trichloroethylene	1 9E+02	3 90E+01	1 6E-04	1 9E±01	

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator		
IUR	Source	RfC	Source			
(ug/m ³) ⁻¹		(mg/m ³)		i		
		2.00E-01				
1.00E-08	_	6.00E-01		Mut		
2.60E-07		4.00E-02				
4.10E-06	-	2.00E-03	-	Mut		

Selected (based on

scenario)

IURTCE GW 3.10E-06

Value

Symbol

Notes:

(1)	Inhalation Bathway Exposure Parameters (PME):	Unite	Reside	ntial	Commer	cial	Selected (based on	
(1)	initiation ratiway Exposure ratameters (NME).	onits	noonao		•••••••	- I al	scen	ario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc GW	70	
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26	
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26	
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF GW	350	
	Exposure time	(hr/day)	ETRGW	24	ETCGW	8	ET GW	24	
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected (based on	
(-)							scen	ario)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value	
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GW	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)

Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

mIURTCE GW 1.00E-06 mIURTCE R GW 1.00E-06 IURTCE C GW 0.00E+00 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06

Value

Commercial

Value

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Symbol

http://www.atsdr.cdc.gov/mrls/index.html

http://epa-heast.ornl.gov/heast.shtml

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

http://hhpprtv.ornl.gov/pprtv.shtml

Residential

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-162

Symbol	Value	Instructions
Scenario	Residential	Select residential or commercial scenario from pull down list
TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations
	Scenario TCR THQ Tgw	Symbol Value Scenario Residential TCR 1.00E-04 THQ 1 Tgw 11.7

		Site Groundwater	Calculated Indoor Air	VI Carcinogenic	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic
		Concentration	Concentration	Risk		rtion	Courses*	•••••••	Source*	Indicator
		Cgw	Cia	<u></u>	ЦО	IUR	Source	RfC	Source	
CAS	Chemical Name	(ug/L)	(ug/m ³)	UK	пų	(ug/m ³) ⁻¹		(mg/m ³)		i

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

MW-1	63
------	----

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Cgw	Cia	C D	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	нų
67-66-3	Chloroform	3.2E-01	2.65E-02	2.2E-07	2.6E-04
75-09-2	Methylene Chloride	2.3E-01	1.76E-02	1.7E-10	2.8E-05
127-18-4	Tetrachloroethylene	4.8E+01	1.64E+01	1.5E-06	3.9E-01
79-01-6	Trichloroethylene	2 7E+00	5 54E-01	2.2E-06	2 7E-01

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source	RfC	Source		
(ug/m ³) ⁻¹		(mg/m ³)		i	
2.30E-05		9.80E-02	Α		
1.00E-08	_	6.00E-01		Mut	
2.60E-07		4.00E-02			
4.10E-06		2.00E-03		Mut	

Selected (based on

scenario)

Value

Notes:

(1)	Inholation Bothway Exposure Barameters (BME):	Unito	Resider	Pesidential		cial	Selected (based on
(1)	Initiation Failway Exposure Farameters (RME).	Units	Resider	litiai	Commercial		scenario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc_GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF GW	350
	Exposure time	(hr/day)	ET R GW	24	ET C GW	8	ET GW	24
(2)	Generic Attenuation Factors:		Resider	ntial	Commer	cial	Selected (based on
(2)	Cenerio Attendation Factors.				•••••••	- ai	scen	ario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GW	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

Symbol Value Symbol Value Symbol mIURTCE GW 1.00E-06 mIURTCE R GW 1.00E-06 IURTCE C GW 0.00E+00 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06 IURTCE GW 3.10E-06

Commercial

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

http://hhpprtv.ornl.gov/pprtv.shtml

Residential

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 vears	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

http://epa-heast.ornl.gov/heast.shtml

http://www.atsdr.cdc.gov/mrls/index.html

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-163

_WIW-103			
Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
		Cgw	Cia	0.0	110	IUR	Source	RfC	Source"	
CAS	Chemical Name	(ug/L)	(ug/m ³)	UK UK	EQ.	(ug/m ³) ⁻¹		(mg/m ³)		i

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

OSWER VAPOR INTRUSION ASSESSMENT

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
CAS	Chemical Name	Cgw (ug/L)	Cia (ug/m ³)	CR	HQ
78-93-3	Methyl Ethyl Ketone (2-Butanone)	9.7E+01	1.16E-01	No IUR	2.2E-05
75-09-2	Methylene Chloride	3.1E-01	2.37E-02	2.3E-10	3.8E-05
127-18-4	Tetrachloroethylene	5.1E-01	1.74E-01	1.6E-08	4.2E-03
79-01-6	Trichloroethylene	7.6E-01	1 56E-01	6 3E-07	7 5E-02

Inhalation Unit Risk	IUR	Reference Concentration RFC Source*		Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
		5.00E+00		
1.00E-08	_	6.00E-01	_	Mut
2.60E-07		4.00E-02		
4.10E-06	1	2.00E-03	1	Mut

Selected (based on

scenario)

IURTCE GW 3.10E-06

Value mIURTCE GW 1.00E-06

Symbol

Notes:

(4)	Inheletion Dethusou Functione Developmentane (BMF):	11-24-	Posido	Residential		cial	Selected (based on
(1)	Innalation Pathway Exposure Parameters (RME):	Units	Reside	nuai	Commercial		scenario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc_GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF GW	350
	Exposure time	(hr/day)	ET R GW	24	ET C GW	8	ET GW	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected (based on
(=)							scen	ario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GW	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)

Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

Mutagenic Chemicals

IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06 The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

mIURTCE R GW

http://hhpprtv.ornl.gov/pprtv.shtml

Residential

Value

Commercial

Value

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Symbol

1.00E-06 IURTCE C GW 0.00E+00

http://www.atsdr.cdc.gov/mrls/index.html

http://epa-heast.ornl.gov/heast.shtml

Note: This section applies to trichloroethylene and other	Age Cohort	Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

F......

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

MW-164

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater	Calculated Indoor Air	VI Carcinogenic	VI Hazard	Inhalation Unit		Reference		Mutagenic
	Concentration	Concentration	Risk		Risk	IUR	Concentration	RFC	Indicator	
		Cgw	Cia	C D	110	IUR	Source	RfC	Source	
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	ΠQ	(ug/m ³) ⁻¹		(mg/m ³)		i

Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).
Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-165

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Cgw	Cia	0.0	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	UK	ΗQ
75-09-2	Methylene Chloride	3.4E-01	2.60E-02	2.6E-10	4.1E-05
127-18-4	Tetrachloroethylene	7.6E+00	2.59E+00	2.4E-07	6.2E-02
70-01-6	Trichloroethylene	1 7E+01	3 /0E+00	14E-05	1 7E±00

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source	RfC	Source		
(ug/m ³) ⁻¹		(mg/m ³)		i	
1.00E-08	_	6.00E-01	_	Mut	
2.60E-07	_	4.00E-02	_		
4.10E-06		2.00E-03		Mut	

Selected (based on

scenario)

mIURTCE GW 1.00E-06

IURTCE GW 3.10E-06

Value

Symbol

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Reside	ntial	Commerc	cial	Selected sce	(based on nario)
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_GW	26
	Exposure frequency	(days/yr)	EF_R_GW	350	EF_C_GW	250	EF_GW	350
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET_GW	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commerc	cial	Selected sce	(based on nario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GV	/ 0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03

(3) **Formulas**

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

mIURTCE R GW

Residential

Value

IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06

Commercial

Symbol

1.00E-06 IURTCE C GW 0.00E+00

Value

Note: This section applies to trichloroethylene a mutagenic chemicals, but not to vinvl chloride.	nd other	ge Cohort	Exposure Duration 2	Age-dependent adjustmen factor 10	nt
, , , , , , , , , , , , , , , , , , ,	2	2 - 6 years	4	3	
	6	- 16 years	10	3	
	16	6 - 26 years	10	1	
Mutage	nic-mode-of-actio	n (MMOA) adjus	stment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride See t	he Navigation Guid	le equation for C	ia,c for vinyl ch	loride.	
Notation: I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Avail A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Ris CA = California Environmental Protection Agency/Office of Environmental Hea H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HE S = See RSL User Guide, Section 5 X = PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure equation for vinyl chloride applies (see Navigation Guit VC = Special exposure equation for vinyl chloride applies (see Navigation Guit)	able online at: k Levels (MRLs). A th Hazard Assessm (AST) database. An sure parameters ap e for equation). see foot note (4) ab	http://www.epa.g Available online a nent assessmeni vailable online ai oply (see footnote pove).	ov/iris/subst/inde http://hhpp at: s. Available o t: t: e (4) above).	<u>ix.html</u> <u>tv.ornl.gov/pprtv.shtml</u> <u>http://ww</u> nline at: <u>http://epa-hea</u> :	w.atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp at.oml.gov/heast.shtml

TCE = Special Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
		Cgw	Cia	CP	ЦО
CAS	Chemical Name	(ug/L)	(ug/m ³)	UN	nu
75-27-4	Bromodichloromethane	5.0E-01	2.19E-02	2.9E-07	No RfC
67-66-3	Chloroform	2.4E+00	1.99E-01	1.6E-06	1.9E-03
127-18-4	Tetrachloroethylene	8.5E-01	2.90E-01	2.7E-08	6.9E-03
79-01-6	Trichloroethylene	1 0E+00	2 05E-01	8.3E-07	9.8E-02

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source	RfC	Source"		
(ug/m ³) ⁻¹		(mg/m ³)		i	
3.70E-05	CA				
2.30E-05	_	9.80E-02	A		
2.60E-07	_	4.00E-02	_		
4.10E-06		2.00E-03	-	Mut	

Selected (based on

scenario)

Value

Symbol

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Unite	Residential		Commercial		Selected	(based on
(1)	innalation r attiway Exposure r arameters (RME).	onits			Commercial		scenario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATc R GW	70	ATc C GW	70	ATc GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26
	Exposure duration	(vrs)	ED R GW	26	ED C GW	25	ED GW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF_GW	350
	Exposure time	(hr/day)	ETRGW	24	ETCGW	8	ET GW	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected	(based on
(=)							sce	nario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GV	V 0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia, c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia, c (ug/m3) = THQ x ATrc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

 mIURTCE
 R
 GW
 1.00E-06
 IURTCE
 C
 W
 0.00E+00
 mIURTCE
 GW
 1.00E-06
 IURTCE
 GW
 1.00E-06
 IURTCE
 GW
 3.10E-06
 IURTCE
 C
 W
 4.10E-06
 IURTCE
 GW
 3.10E-06
 IURTCE

Value

Residential

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

http://hhpprtv.ornl.gov/pprtv.shtml

Symbol

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

http://epa-heast.ornl.gov/heast.shtml

http://www.atsdr.cdc.gov/mrls/index.html

Commercial

Value

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Symbol

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MANAL 4 C

MW-166			
Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Torget Hazard Quetient for Nen Caroinegone	THO	1	Enter target bazard quotient for non-carcinogens (for comparison to the calculated VI bazard in colu

	~		
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
		Cgw	Cia	<u>CD</u>	110	IUR	Source*	RfC	Source*	
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	EQ.	(ug/m ³) ⁻¹		(mg/m ³)		i

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-167

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

			Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	
		Cgw	Cia	CP	но	
CAS	Chemical Name	(ug/L)	(ug/m ³)	ON	i i se	
75-27-4	Bromodichloromethane	8.4E-01	3.68E-02	4.8E-07	No RfC	
67-66-3	Chloroform	3.0E+00	2.48E-01	2.0E-06	2.4E-03	
127-18-4	Tetrachloroethylene	8.6E+00	2.93E+00	2.7E-07	7.0E-02	
79-01-6	Trichloroethylene	2 6E+00	5 34E-01	2 2E-06	2 6E-01	

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
3.70E-05	CA			
2.30E-05		9.80E-02	Α	
2.60E-07		4.00E-02		
4.10E-06	-	2.00E-03	-	Mut

Selected (based on

scenario)

Value

Notes:

(1) Inhalation Pathway Exposure Parameters (PME):		Unite	Posido	Commercial		Selected	(based on	
(1)	Innalation Pathway Exposure Parameters (RME):	Units	Reside	iiiai	Commen	Ciai	scel	nario)
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_GW	26	ATnc C GW	25	Atnc GW	26
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF GW	350
	Exposure time	(hr/day)	ET R GW	24	ET C GW	8	ET GW	24
(2)	Generic Attenuation Factors:		Residential Commercial		Selected	(based on		
(2)	Generic Alteridation 1 actors.		Reside	innai	Commen	olui	scer	nario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GW	/ 0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Trichloroethylene

Symbol Value Symbol Value Symbol mIURTCE GW 1.00E-06 mIURTCE R GW 1.00E-06 IURTCE C GW 0.00E+00 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06 IURTCE GW 3.10E-06

http://www.atsdr.cdc.gov/mrls/index.html

http://epa-heast.ornl.gov/heast.shtml

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Commercial

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

http://hhpprtv.ornl.gov/pprtv.shtml

Residential

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
, , , , , , , , , , , , , , , , , , ,	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-167

14144-107			
Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
		Cgw	Cia	0.0	110	IUR	Source	RfC	Source"	
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	HQ	(ug/m ³) ⁻¹		(mg/m ³)		i

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

MW-169

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site	Calculated	VI	
		Groundwater	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Cgw	Cia	CD.	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	нų
75-09-2	Methylene Chloride	2.2E-01	1.68E-02	1.7E-10	2.7E-05

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source	RfC	Source		
(ug/m ³) ⁻¹		(mg/m ³)		i	
1.00E-08		6.00E-01		Mut	

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units		Residential		Commercial		Selected scen	Selected (based on scenario)	
	Exposure Scenario			Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)		ATc_R_GW	70	ATc_C_GW	70	ATc_GW	70	
	Averaging time for non-carcinogens	(yrs)		ATnc_R_GW	26	ATnc_C_GW	25	Atnc_GW	26	
	Exposure duration	(yrs)		ED_R_GW	26	ED_C_GW	25	ED_GW	26	
	Exposure frequency	(days/yr)		EF R GW	350	EF C GW	250	EF GW	350	
	Exposure time	(hr/day)		ET R GW	24	ET C GW	8	ET GW	24	
(2)	Generic Attenuation Factors:			Reside	ntial	Commer	cial	Selected scen	(based on ario)	
	Source Medium of Vapors			Symbol	Value	Symbol	Value	Symbol	Value	
	Groundwater	(-)		AFgw R GW	0.001	AFgw C GW	0.001	AFgw GW	0.001	
	Sub-Slab and Exterior Soil Gas	(-)		AFss R GW	0.03	AFss C GW	0.03	AFss GW	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

) Special Case Chem	Special Case Chemicals	Reside	ntial	Commercial	Selected (based on
-)					scenario)
	Trichloroethylene	Symbol	Value	Symbol Valu	e Symbol Value
		mIURTCE_R_GW	1.00E-06	IURTCE_C_GW 0.00E-	+00 mIURTCE_GW 1.00E-06
		IURTCE R GW	3.10E-06	IURTCE C GW 4.10E	-06 IURTCE GW 3.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trich mutagenic chemicals, but not to	loroethylene and other vinyl chloride.	Age Cohort	Exposure Duration	Age-dependent adjustment factor 10	
		2 - 6 years 6 - 16 years	4 10	3	
		16 - 26 years	10	1	
	Mutagenic-mode-of-a	ction (MMOA) adju	stment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride	See the Navigation	Guide equation for	Cia,c for vinyl chl	oride.	
Notation:					
I = IRIS: EPA Integrated Risk Information System (IRIS). Availa P = PRTV EPA Provisional Peer Reviewed Toxicity Values (PI	ble online at:	http://www.epa.	gov/iris/subst/inde	<u>k.html</u> hv.orgl.gov/pprtv.shtml	
A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRL	s). Available online	at:	http://www.	atsdr.cdc.gov/mrls/index.html
CA = California Environmental Protection Agency/Office of Envir	onmental Health Hazard Ass	essment assessme	nts. Available or	line at:	http://www.oehha.ca.gov/risk/ChemicalDB/index.asp
H = HEAST. EPA Superfund Health Effects Assessment Summ	ary Tables (HEAST) databas	e. Available online	at:	http://epa-heast.c	ornl.gov/heast.shtml
S = See RSL User Guide, Section 5 X = PPRTV Appendix					
Mut = Chemical acts according to the mutagenic-mode-of-action	, special exposure parameter	rs apply (see footno	te (4) above).		
VC = Special exposure equation for vinyl chloride applies (see N	avigation Guide for equation).	., ,		
TCE = Special mutagenic and non-mutagenic IURs for trichloroe	thylene apply (see footnote (4) above).			
Yellow highlighting indicates site-specific parameters that may be	e edited by the user.	0 ()(0)000			

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed. Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-170

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	
		Cgw	Cia	0.0	110	
CAS	Chemical Name	(ug/L)	(ug/m ³)	UK	ΠQ	
75-27-4	Bromodichloromethane	1.7E-01	7.45E-03	9.8E-08	No RfC	
67-66-3	Chloroform	6 2E-01	5 13E-02	4.2E-07	5.0E-04	

Inhalation Unit Risk	IUR Sourcest	Reference Concentration	RFC	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
3.70E-05	CA			
2 30E-05		9 80E-02	A	

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Resider	ntial	Commer	cial	Selec	ted (ba scenari	ised on io)
	Exposure Scenario		Symbol	Value	Symbol	Value	Sym	loc	Value
	Averaging time for carcinogens	(yrs)	ATc_R_GW	70	ATc_C_GW	70	ATc_	GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc	GW	26
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_(SW	26
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF (SW	350
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET_C	SW	24
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selec	Selected (based on scenario)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Sym	loc	Value
	Groundwater	(-)	AFgw_R_GW	0.001	AFgw_C_GW	0.001	AFgw	GW	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss_R_GW	0.03	AFss_C_GW	0.03	AFss	GW	0.03

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

)	Special Case Chemicals	Reside	ntial	Commercial		Selected (b scena	Selected (based on scenario)	
	Trichloroethylene	Symbol	Value	Symbol	Value	Symbol	Value	
		mIURTCE_R_GW	1.00E-06	IURTCE_C_GW_0	0.00E+00	mIURTCE_GW	1.00E-06	
		IURTCE R GW	3.10E-06	IURTCE C GW 4	4.10E-06	IURTCE GW	3.10E-06	

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trichloroethylene mutagenic chemicals, but not to vinyl chloride.	Age Cohort 0 - 2 years 2 - 6 years 6 - 16 years 16 - 26 years	Exposure Duration 2 4 10 10	Age-dependent adjustment factor 10 3 3 1	
Mutage	enic-mode-of-action (MMOA) ad	justment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride See	the Navigation Guide equation for	r Cia,c for vinyl chl	oride.	
Notation: I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at: P = Approversional Peer Reviewed Toxicity Values (PPRTVs). Available online at: A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Ri CA = California Environmental Protection Agency/Office of Environmental Hea H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HI S = See RSL User Guide, Section 5 X = PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action, special expo VC = Special exposure equation for vinyl chloride applies (see Navigation Gui TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply Yellow highlighting indicates exposure factors that are based on Risk Assessme Pilk highlighting indicates VI carcinogenic risk greater than the target risk for comparison of the stress of the stresstress of the stress of the stress of the stresstress o	<u>http://www.epa</u> lable online at: sk Levels (MRLs). Available online lith Hazard Assessment assessme EAST) database. Available online sure parameters apply (see footn de for equation). (see footnote (4) above). suser. nt Guidance for Superfund (RAGS arcinogens (TCR) or VI Hazard g	a.qov/iris/subst/inde http://hhppr e at: ents. Available on e at: ote (4) above).	<u>k.html</u> <u>v.orni.gov/pprtv.shtml</u> line at: <u>http://epa-heast.c</u> <u>http://epa-heast.c</u> trusion guidance, which genera al to the target hazard guotient i	atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp rnl.gov/heast.shtml lly should not be changed. for non-carcinogens (THQ).

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs M\M_171

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Taw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard		Inhalation Uni Risk
		Cgw	Cia	CP	но		IUR
CAS	Chemical Name	(ug/L)	(ug/m ³)	OR	1		(ug/m ³) ⁻¹
67-64-1	Acetone	1.4E+01	1.11E-02	No IUR	3.4E-07		
107-13-1	Acrylonitrile	7.2E-01	2.02E-03	4.9E-08	9.7E-04		6.80E-05
71-43-2	Benzene	1.4E+00	1.68E-01	4.7E-07	5.4E-03		7.80E-06
75-15-0	Carbon Disulfide	3.1E-01	1.08E-01	No IUR	1.5E-04		
591-78-6	Hexanone, 2-	5.8E-01	9.86E-04	No IUR	3.2E-05		
78-93-3	Methyl Ethyl Ketone (2-Butanone)	5.7E+01	6.83E-02	No IUR	1.3E-05		
108-10-1	Methyl Isobutyl Ketone (4-methyl-2-pentanone)	1.6E+00	4.15E-03	No IUR	1.3E-06		
100-42-5	Styrene	9.8E-02	4.84E-03	No IUR	4.6E-06		
127-18-4	Tetrachloroethylene	2.4E+00	8.18E-01	7.6E-08	2.0E-02]	2.60E-07
108-88-3	Toluene	1.1E+00	1.45E-01	No IUR	2.8E-05]	
79-01-6	Trichloroethylene	3.6E-01	7.39E-02	3.0E-07	3.5E-02		4.10E-06

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Reside	ntial	Commerc	cial	Selected scer	(based on ario)	
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	
	Averaging time for carcinogens	(yrs)	ATc_R_GW	70	ATc_C_GW	70	ATc_GW	70	
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26	
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26	
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF GW	350	
	Exposure time	(hr/day)	ET R GW	24	ET C GW	8	ET GW	24	
(2)	Generic Attenuation Factors:		Reside	ntial	Commerc	cial	Selected scer	Selected (based on scenario)	
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value	
	Groundwater	(-)	AFgw R GW	0.001	AFgw_C_GW	0.001	AFgw GW	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss_GW	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4)	Special Case Chemicals	Residential Commercial		Selected (based or scenario)			
	Trichloroethylene	Symbol	Value	Symbol	Value	Symbol	Value
		mIURTCE_R_GW	1.00E-06	IURTCE_C_GW	0.00E+00	mIURTCE_GW 1.	.00E-06
		IURTCE R GW	3.10E-06	IURTCE C GW	4.10E-06	IURTCE GW 3	.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trichloroet	hylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor	
mutagenic chemicals, but not to vinyl cl	hloride.	0 - 2 years	2	10	
		2 - 6 years	4	3	
		6 - 16 years	10	3	
		16 - 26 years	10	1	
			_		
	Mutagenic-mode-of-ac	tion (MMOA) adju	stment factor	72	This factor is used in the equations for mutagenic chemicals.
Vinyl Chloride	See the Navigation G	oride.			

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

http://www.epa.gov/iris/subst/index.html P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at: http://hhpprtv.ornl.gov/pprtv.shtml

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

http://www.atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp http://epa-heast.ornl.gov/heast.shtml

Reference

Concentration

RfC (mg/m³) 3.10E+01

2.00E-03

3.00E-02

7.00E-01

3.00E-02

5.00E+00

3.00E+00

1.00E+00

4.00E-02

5.00E+00 2.00E-03

IUR

Source'

Mutagenic

Indicator

Mut

RFC

Source

Α

1

Ι

1

1

1

1

1

1

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

Symbol	Value	Instructions
Scenario	Residential	Select residential or commercial scenario from pull down list
TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations
	Symbol Scenario TCR THQ Tgw	Symbol Value Scenario Residential TCR 1.00E-04 THQ 1 Tgw 11.7

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator
		Cgw	Cia	C D	110	IUR	Source	RfC	Source	
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	EQ.	(ug/m ³) ⁻¹		(mg/m ³)		i

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed. Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site	Calculated	VI	
		Groundwater	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Cgw	Cia	CD	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	нų
67-66-3	Chloroform	7.3E-01	6.04E-02	5.0E-07	5.9E-04

Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
IUR	Source	RfC	Source		
(ug/m ³) ⁻¹		(mg/m ³)		i	
2.30E-05		9.80E-02	A		

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Parameters (RME): Units		Reside	ntial	Commercial		Selecte sc	Selected (based o scenario)	
	Exposure Scenario			Symbol	Value	Symbol	Value	Symbo	Valu	e
	Averaging time for carcinogens	(yrs)		ATc_R_GW	70	ATc_C_GW	70	ATc_GV	/ 70	
	Averaging time for non-carcinogens	(yrs)		ATnc_R_GW	26	ATnc_C_GW	25	Atnc_G	v 26	
	Exposure duration	(yrs)		ED_R_GW	26	ED_C_GW	25	ED_GV	26	
	Exposure frequency	(days/yr)		EF R GW	350	EF C GW	250	EF GV	350	j l
	Exposure time	(hr/day)		ET R GW	24	ET C GW	8	ET GV	24	
(2)	Generic Attenuation Factors:			Reside	ntial	Commer	cial	Selecte sc	l (based o ∂nario)	'n
	Source Medium of Vapors			Symbol	Value	Symbol	Value	Symbo	Valu	e
	Groundwater	(-)		AFgw R GW	0.001	AFgw C GW	0.001	AFgw G	N 0.001	1
	Sub-Slab and Exterior Soil Gas	(-)		AFss R GW	0.03	AFss C GW	0.03	AFss G	N 0.03	3

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

1)	Special Case Chemicals	Residential Commercial			Selected (based on
-)					scenario)
	Trichloroethylene	Symbol	Value	Symbol Valu	e Symbol Value
		mIURTCE_R_GW	1.00E-06	IURTCE_C_GW 0.00E-	+00 mIURTCE_GW 1.00E-06
		IURTCE R GW	3.10E-06	IURTCE C GW 4.10E	-06 IURTCE GW 3.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trichloroethylene and other mutagenic chemicals, but not to vinyl chloride.	Age Cohort 0 - 2 years 2 - 6 years 6 - 16 years 16 - 26 years	Exposure Duration 2 4 10 10	Age-dependent adjustment factor 10 3 3 1		
Mutagenic-mode-of-	action (MMOA) adj	ustment factor	72	This factor is used in the equations for mutagenic chemicals.	
Vinyl Chloride See the Navigation Guide equation for Cia,c for vinyl chloride.					
Notation: = IRIS: EPA Integrated Risk Information System (IRIS). Available online at: > = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at: A agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRI CA = California Environmental Protection Agency/Office of Environmental Health Hazard As: + = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) databas S = See RSL User Guide, Section 5 X = PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameter VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote Vellow binhibition indicates site-specific narameters that may be edited by the user	<u>http://www.epa</u> Ls). Available online sessment assessme se. Available online ers apply (see footno 1). (4) above).	.gov/iris/subst/inde http://hhppr e at: nfs. Available or at: ote (4) above).	<u>x.html</u> I <u>v.ornl.qov/pprtv.shtml</u> http://www. line at: <u>http://epa-heast.c</u>	atsdr.cdc.gov/mrls/index.html http://www.oehha.ca.gov/risk/ChemicalDB/index.asp rnl.gov/heast.shtml	

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed. Pink highlighting indicates VI carcinogenic risk greater than the target risk for carcinogens (TCR) or VI Hazard greater than or equal to the target hazard quotient for non-carcinogens (THQ).

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

MW	-174
----	------

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard
CAS	Chemical Name	Cgw (ug/L)	Cia (ug/m ³)	CR	HQ
75-27-4	Bromodichloromethane	3.1E-01	1.36E-02	1.8E-07	No RfC
67-66-3	Chloroform	1.7E+00	1.41E-01	1.2E-06	1.4E-03
127-18-4	Tetrachloroethylene	5.6E+00	1.91E+00	1.8E-07	4.6E-02
79-01-6	Trichloroethylene	8 9E-01	1.83E-01	7 4E-07	8.8E-02

Inhalation Unit Risk	IUR	Reference Concentration RFC Ind Source*		Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
3.70E-05	CA			
2.30E-05	_	9.80E-02	A	
2.60E-07	_	4.00E-02	_	
4.10E-06		2.00E-03		Mut

Selected (based on

scenario)

IURTCE GW 3.10E-06

Value

Symbol

Notes:

(1)	nhalation Pathway Exposure Parameters (RME): Units		Residential		Commercial		Selected (based of scenario)		1
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value	,
	Averaging time for carcinogens	(yrs)	ATC R GW	70	ATC C GW	70	ATc GW	70	
	Averaging time for non-carcinogens	(yrs)	ATnc R GW	26	ATnc C GW	25	Atnc GW	26	
	Exposure duration	(yrs)	ED R GW	26	ED C GW	25	ED GW	26	
	Exposure frequency	(days/yr)	EF R GW	350	EF C GW	250	EF_GW	350	
	Exposure time	(hr/day)	ET R GW	24	ET C GW	8	ET GW	24	
(2)	Generic Attenuation Factors:		Reside	ntial	Commer	cial	Selected	(based or nario)	1
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value	,
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GV	0.001	
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GV	0.03	

(3) Formulas

Cia, target = MIN(Cia,c; Cia,nc)

Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemicals

Vinyl Chloride

Trichloroethylene

mIURTCE GW 1.00E-06 mIURTCE R GW 1.00E-06 IURTCE C GW 0.00E+00 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06

Value

Commercial

Value

http://www.oehha.ca.gov/risk/ChemicalDB/index.asp

Symbol

http://www.atsdr.cdc.gov/mrls/index.html

http://epa-heast.ornl.gov/heast.shtml

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

http://hhpprtv.ornl.gov/pprtv.shtml

Symbol

Note: This section applies to trichloroethylene and other	Age Cohort	Exposure Duration	Age-dependent adjustment factor
mutagenic chemicals, but not to vinyl chloride.	0 - 2 years	2	10
	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

http://www.epa.gov/iris/subst/index.html

Mutagenic-mode-of-action (MMOA) adjustment factor 72 This factor is used in the equations for mutagenic chemicals.

Residential

See the Navigation Guide equation for Cia,c for vinyl chloride.

Notation:

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

X = PPRTV Appendix

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).

VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs

MW-174

Symbol	Value	Instructions
Scenario	Residential	Select residential or commercial scenario from pull down list
TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations
	Symbol Scenario TCR THQ Tgw	Symbol Value Scenario Residential TCR 1.00E-04 THQ 1 Tgw 11.7

		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator	
		Cgw	Cia	6 0	110	IUR	Source	RfC	Source		
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	ΠQ	(ug/m ³) ⁻¹		(mg/m ³)		i	

Groundwater Concentration to Indoor Air Concentration (GWC-IAC) Calculator Version 3.4, June 2015 RSLs MW-175

Parameter	Symbol	Value	Instructions
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list
Target Risk for Carcinogens	TCR	1.00E-04	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens (for comparison to the calculated VI hazard in column G)
Average Groundwater Temperature (°C)	Tgw	11.7	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations

		Site	Calculated	VI	
		Groundwater	Indoor Air	Carcinogenic	VI Hazard
		Concentration	Concentration	Risk	
		Cgw	Cia	CD	110
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	ΠQ
75-27-4	Bromodichloromethane	4.2E-01	1.84E-02	2.4E-07	No RfC
67-66-3	Chloroform	1.9E+00	1.57E-01	1.3E-06	1.5E-03
124-48-1	Dibromochloromethane	1 5E-01	2.87E-03	2.8E-08	No RfC

Inhalation Unit Risk	IUR Sourcest	Reference Concentration	RFC Source*	Mutagenic Indicator
IUR	Source	RfC	Source	
(ug/m ³) ⁻¹		(mg/m ³)		i
3.70E-05	CA			
2.30E-05		9.80E-02	A	
2.70E-05	CA			

Selected (based on

scenario) Symbol

mIURTCE GW 1.00E-06

IURTCE GW 3.10E-06

Value

Notes:

(1)	Inhalation Pathway Exposure Parameters (RMF):	Units	Reside	ntial	Commer	cial	Selected	(based on
(.)							sce	nario)
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATc R GW	70	ATc C GW	70	ATc GW	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R_GW	26	ATnc_C_GW	25	Atnc GW	26
	Exposure duration	(yrs)	ED_R_GW	26	ED_C_GW	25	ED_GW	26
	Exposure frequency	(days/yr)	EF_R_GW	350	EF_C_GW	250	EF_GW	350
	Exposure time	(hr/day)	ET_R_GW	24	ET_C_GW	8	ET_GW	24
(2)	Generic Attenuation Factors:		Resider	ntial	Commer	cial	Selected	(based on nario)
	Source Medium of Vapors		Symbol	Value	Symbol	Value	Symbol	Value
	Groundwater	(-)	AFgw R GW	0.001	AFgw C GW	0.001	AFgw GV	0.001
	Sub-Slab and Exterior Soil Gas	(-)	AFss R GW	0.03	AFss C GW	0.03	AFss GV	/ 0.03

(3) **Formulas**

Cia, target = MIN(Cia,c; Cia,nc) Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR) Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) Special Case Chemic

Trichloroethylene

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Symbol

mIURTCE R GW

Residential

Value

1.00E-06 IURTCE R GW 3.10E-06 IURTCE C GW 4.10E-06

Commercial

IURTCE C GW 0.00E+00

Symbol

Value

Note: This section applies to trichloroethylene and other mutagenic chemicals, but not to vinyl chloride.	Age Cohort 0 - 2 years 2 - 6 years	Exposure Duration 2 4	Age-dependent adjustment factor 10 3 3		
	16 - 26 years	10	1		
Mutagenic-mode-c	of-action (MMOA) adj	ustment factor	72	This factor is used in the equations for mutagenic chemicals.	
Vinyl Chloride See the Navigati	on Guide equation for	Cia,c for vinyl ch	loride.		
Notation: http://www.epa.gov/iris/subst/index.html P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at: http://www.epa.gov/iris/subst/index.html A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at: http://www.atsdr.cdc.gov/mrls/index.html CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at: http://www.atsdr.cdc.gov/mrls/index.html H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at: http://www.atsdr.cdc.gov/mrls/index.html S = See RSL User Guide, Section 5 x = PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above). tese footnote (4) above). VC = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above). TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).					

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

Temperature - Precipitation - Sunshine - Snowfall

US Climate Data on 🔢 📘

You are here: United States > Pennsylvania > York

Home	United States	Pennsylvania	Enter a location

Monthly	Geo & Map	Wea	ther For	ecast			
Climate York	- Pennsylvan	ia					°C °F
		Jan	Feb	Mar	Apr	Мау	Jun
Average high	in °F:	39	43	53	65	75	83
Average low in	n °F:	21	23	31	39	49	58
Av. precipitati	on in inch:	3.43	2.76	3.66	3.5	4.25	4.29
Days with pre	cipitation:	-	-	-	-	-	-
Hours of sunsl	hine:	-	-	-	-	-	-
		Jul	Aug	Sep	Oct	Nov	Dec
Average high	in °F:	87	85	78	67	54	43
Average low in	n ⁰F:	63	61	54	42	34	26
Av. precipitati	on in inch:	3.74	3.35	4.09	3.15	3.46	3.23
Days with pre	cipitation:	-	-	-	-	-	-
Hours of suns	hine	-	-			-	-

4 FOOT FARM BLUEPRNI Over 300,000 copies sold worldwide

Blueprint Revealed Here

Climate data for York, PA - 17364 - 1961-1990 normals - weather

Jan: January, Feb: February, Mar: March, Apr: April, May: May, Jun: June, Jul: July, Aug: August, Sep: September, Oct: October, Nov: November, Dec: December

York weather averages

Annual high temperature:	64.3°F		
Annual low temperature:	41.8°F		
Average temperature:	53.05°F		
Average annual precipitation - rainfall:	42.91 inch		
Days per year with precipitation - rainfall:	-		
Annual hours of sunshine:	-		
Av. annual snowfall:	-		
<u>[8+1]</u> 0			

Concealed Carry Guide

Do You Know Your Rights? Get Your Free Concealed Carry Guide Today!

0 0

Central PA Concierge We do stuff you don't want to do. Give us mundane, focus on important

York Climate Graph - Pennsylvania Climate Chart

Climograph of York on your website

© 2015 US Climate Data | version 2.2 beta | Programming & Design by Your Weather Service | World Climate | Weernetwerk

About us | Disclaimer